L(s) = 1 | + (−0.959 + 0.281i)2-s + (−0.978 + 0.207i)3-s + (0.841 − 0.540i)4-s + (0.123 − 0.992i)5-s + (0.879 − 0.475i)6-s + (0.580 − 0.814i)7-s + (−0.654 + 0.755i)8-s + (0.913 − 0.406i)9-s + (0.161 + 0.986i)10-s + (−0.710 + 0.703i)12-s + (−0.625 − 0.780i)13-s + (−0.327 + 0.945i)14-s + (0.0855 + 0.996i)15-s + (0.415 − 0.909i)16-s + (0.640 + 0.768i)17-s + (−0.761 + 0.647i)18-s + ⋯ |
L(s) = 1 | + (−0.959 + 0.281i)2-s + (−0.978 + 0.207i)3-s + (0.841 − 0.540i)4-s + (0.123 − 0.992i)5-s + (0.879 − 0.475i)6-s + (0.580 − 0.814i)7-s + (−0.654 + 0.755i)8-s + (0.913 − 0.406i)9-s + (0.161 + 0.986i)10-s + (−0.710 + 0.703i)12-s + (−0.625 − 0.780i)13-s + (−0.327 + 0.945i)14-s + (0.0855 + 0.996i)15-s + (0.415 − 0.909i)16-s + (0.640 + 0.768i)17-s + (−0.761 + 0.647i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.931 - 0.364i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.931 - 0.364i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8976239237 - 0.1691986754i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8976239237 - 0.1691986754i\) |
\(L(1)\) |
\(\approx\) |
\(0.6276453758 - 0.07480284271i\) |
\(L(1)\) |
\(\approx\) |
\(0.6276453758 - 0.07480284271i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.959 + 0.281i)T \) |
| 3 | \( 1 + (-0.978 + 0.207i)T \) |
| 5 | \( 1 + (0.123 - 0.992i)T \) |
| 7 | \( 1 + (0.580 - 0.814i)T \) |
| 13 | \( 1 + (-0.625 - 0.780i)T \) |
| 17 | \( 1 + (0.640 + 0.768i)T \) |
| 19 | \( 1 + (0.272 - 0.962i)T \) |
| 23 | \( 1 + (0.198 + 0.980i)T \) |
| 29 | \( 1 + (0.897 - 0.441i)T \) |
| 37 | \( 1 + (0.548 + 0.836i)T \) |
| 41 | \( 1 + (0.380 + 0.924i)T \) |
| 43 | \( 1 + (0.483 - 0.875i)T \) |
| 47 | \( 1 + (-0.564 + 0.825i)T \) |
| 53 | \( 1 + (0.749 + 0.662i)T \) |
| 59 | \( 1 + (0.380 - 0.924i)T \) |
| 61 | \( 1 + (-0.564 + 0.825i)T \) |
| 67 | \( 1 + (0.235 - 0.971i)T \) |
| 71 | \( 1 + (-0.0665 + 0.997i)T \) |
| 73 | \( 1 + (0.580 + 0.814i)T \) |
| 79 | \( 1 + (0.820 - 0.572i)T \) |
| 83 | \( 1 + (0.749 + 0.662i)T \) |
| 89 | \( 1 + (0.696 - 0.717i)T \) |
| 97 | \( 1 + (0.516 + 0.856i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.47031078488802856492088253228, −18.07237856436088373162579062623, −17.5894779992453277606410534953, −16.53638182596655079541322238749, −16.34206272802829236329833609954, −15.371861245235112294810434292292, −14.622063024791361455585107128357, −14.01511463385431951719198508842, −12.717915118499542478598614787862, −12.07190763636736089756335453274, −11.711252558866007442049510965224, −11.00399478234728857693171378083, −10.36296956789957225236235335519, −9.75832807153174150800529703778, −9.00046795625158645685203054893, −7.96940548646413630731072780305, −7.398583073477643460598504963790, −6.71747302583317746877376038479, −6.06552732147887491822186295726, −5.298557410778539435695342976443, −4.3113003850028125137207155840, −3.19179063391996047549261914898, −2.30458385889255600835520742302, −1.79442389950008497195676642198, −0.6427935755125521225930352116,
0.88097991046458625421011085533, 0.98989946742091153120981388427, 2.13179689958027703248241035990, 3.43942394233097883780320397221, 4.59080093469707573763118595856, 5.063231197869355287553784941229, 5.79435004766327327910248976355, 6.53802483476993264501632088781, 7.55230587563956079633907313474, 7.84540420347842656475381408537, 8.8010116380334462751145391566, 9.70613509268901853214034959743, 10.07917528199453697354276501655, 10.85077041962669036935251605202, 11.5167442240384877389981815298, 12.13882379058275504020740903603, 12.92442433002735214855135767950, 13.71128675675533896767164767636, 14.76943541694634635200743988206, 15.43765426347061450446402941320, 16.03441691096290347541142173828, 16.80556679914224718909637943429, 17.2889690727320220140688506963, 17.53553036112154554715070769964, 18.241905235053030058929062285563