L(s) = 1 | + (0.654 + 0.755i)2-s − 3-s + (−0.142 + 0.989i)4-s + (0.841 + 0.540i)5-s + (−0.654 − 0.755i)6-s + (0.959 − 0.281i)7-s + (−0.841 + 0.540i)8-s + 9-s + (0.142 + 0.989i)10-s + (0.142 − 0.989i)12-s + (−0.142 + 0.989i)13-s + (0.841 + 0.540i)14-s + (−0.841 − 0.540i)15-s + (−0.959 − 0.281i)16-s + (0.415 + 0.909i)17-s + (0.654 + 0.755i)18-s + ⋯ |
L(s) = 1 | + (0.654 + 0.755i)2-s − 3-s + (−0.142 + 0.989i)4-s + (0.841 + 0.540i)5-s + (−0.654 − 0.755i)6-s + (0.959 − 0.281i)7-s + (−0.841 + 0.540i)8-s + 9-s + (0.142 + 0.989i)10-s + (0.142 − 0.989i)12-s + (−0.142 + 0.989i)13-s + (0.841 + 0.540i)14-s + (−0.841 − 0.540i)15-s + (−0.959 − 0.281i)16-s + (0.415 + 0.909i)17-s + (0.654 + 0.755i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.955 + 0.294i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.955 + 0.294i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3509243346 + 2.333123791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3509243346 + 2.333123791i\) |
\(L(1)\) |
\(\approx\) |
\(1.028185392 + 0.9794861356i\) |
\(L(1)\) |
\(\approx\) |
\(1.028185392 + 0.9794861356i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.654 + 0.755i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.841 + 0.540i)T \) |
| 7 | \( 1 + (0.959 - 0.281i)T \) |
| 13 | \( 1 + (-0.142 + 0.989i)T \) |
| 17 | \( 1 + (0.415 + 0.909i)T \) |
| 19 | \( 1 + (-0.415 + 0.909i)T \) |
| 23 | \( 1 + (0.959 + 0.281i)T \) |
| 29 | \( 1 + (0.415 - 0.909i)T \) |
| 37 | \( 1 + (0.142 + 0.989i)T \) |
| 41 | \( 1 + (0.654 + 0.755i)T \) |
| 43 | \( 1 + (0.841 - 0.540i)T \) |
| 47 | \( 1 + (-0.654 + 0.755i)T \) |
| 53 | \( 1 + (0.959 - 0.281i)T \) |
| 59 | \( 1 + (-0.654 + 0.755i)T \) |
| 61 | \( 1 + (-0.654 + 0.755i)T \) |
| 67 | \( 1 + (-0.654 - 0.755i)T \) |
| 71 | \( 1 + (0.415 - 0.909i)T \) |
| 73 | \( 1 + (-0.959 - 0.281i)T \) |
| 79 | \( 1 + (0.841 + 0.540i)T \) |
| 83 | \( 1 + (-0.959 + 0.281i)T \) |
| 89 | \( 1 + (-0.415 - 0.909i)T \) |
| 97 | \( 1 + (0.841 - 0.540i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.162249700595113331642796011416, −17.73038875795014424705962464765, −17.178875980539396657239219620754, −16.20332981849948206328847299772, −15.54210526878501033223851237065, −14.716589469507503628943215969605, −14.10392049099548911711039176153, −13.20189003691369567269674150186, −12.74232914055934629661739140368, −12.14977616978626053256120349317, −11.39161945285236180873558019424, −10.73983221126374430719216630154, −10.3075948220403497944545938535, −9.32320577070270535527716980919, −8.839723464526815432288177903, −7.58491807464384618749053170224, −6.71387948505357642209106840298, −5.85330380551159878165968985532, −5.15155634960993661565306704615, −5.01702648760489815261678367440, −4.15141643100781009907349423779, −2.87105305258871300496225442822, −2.19604653462341091697098354216, −1.19986361509799665915221363800, −0.67114964744847502818603301369,
1.31424161002689759961578276421, 2.00873108006990493892350179486, 3.15698196376217769401365741726, 4.297146474828213873300115450107, 4.57995159783866496996645752919, 5.65210269779146968402933492896, 5.99576556315884184764170105458, 6.74327938371392921355689107795, 7.40192207375501635795920813316, 8.13222116136123957198042053583, 9.11833292217853797871753604616, 9.99491252425939835168707774030, 10.74564951934952113556562374894, 11.3966519751850319456189101434, 12.05496602579512656834096993497, 12.792354090962628992600171817203, 13.57603077922314162820756253015, 14.11374686726083750331716609185, 14.912921975190941678396097328519, 15.24898923267159002455604377183, 16.521046368888258637325636545366, 16.82082437444432674102112344692, 17.36481751177205955277373754572, 17.97022128488202265804391441540, 18.60091865911138718004725349752