L(s) = 1 | + (−0.254 + 0.967i)2-s + (0.309 − 0.951i)3-s + (−0.870 − 0.491i)4-s + (−0.142 − 0.989i)5-s + (0.841 + 0.540i)6-s + (0.974 + 0.226i)7-s + (0.696 − 0.717i)8-s + (−0.809 − 0.587i)9-s + (0.993 + 0.113i)10-s + (−0.736 + 0.676i)12-s + (0.993 − 0.113i)13-s + (−0.466 + 0.884i)14-s + (−0.985 − 0.170i)15-s + (0.516 + 0.856i)16-s + (0.941 + 0.336i)17-s + (0.774 − 0.633i)18-s + ⋯ |
L(s) = 1 | + (−0.254 + 0.967i)2-s + (0.309 − 0.951i)3-s + (−0.870 − 0.491i)4-s + (−0.142 − 0.989i)5-s + (0.841 + 0.540i)6-s + (0.974 + 0.226i)7-s + (0.696 − 0.717i)8-s + (−0.809 − 0.587i)9-s + (0.993 + 0.113i)10-s + (−0.736 + 0.676i)12-s + (0.993 − 0.113i)13-s + (−0.466 + 0.884i)14-s + (−0.985 − 0.170i)15-s + (0.516 + 0.856i)16-s + (0.941 + 0.336i)17-s + (0.774 − 0.633i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.249 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.249 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.449322208 - 1.122726320i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.449322208 - 1.122726320i\) |
\(L(1)\) |
\(\approx\) |
\(1.111250094 - 0.2066420370i\) |
\(L(1)\) |
\(\approx\) |
\(1.111250094 - 0.2066420370i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.254 + 0.967i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 5 | \( 1 + (-0.142 - 0.989i)T \) |
| 7 | \( 1 + (0.974 + 0.226i)T \) |
| 13 | \( 1 + (0.993 - 0.113i)T \) |
| 17 | \( 1 + (0.941 + 0.336i)T \) |
| 19 | \( 1 + (-0.0285 - 0.999i)T \) |
| 23 | \( 1 + (0.974 - 0.226i)T \) |
| 29 | \( 1 + (-0.0285 - 0.999i)T \) |
| 37 | \( 1 + (0.415 - 0.909i)T \) |
| 41 | \( 1 + (-0.254 + 0.967i)T \) |
| 43 | \( 1 + (-0.985 + 0.170i)T \) |
| 47 | \( 1 + (-0.254 - 0.967i)T \) |
| 53 | \( 1 + (0.0855 + 0.996i)T \) |
| 59 | \( 1 + (-0.254 - 0.967i)T \) |
| 61 | \( 1 + (0.841 - 0.540i)T \) |
| 67 | \( 1 + (0.841 + 0.540i)T \) |
| 71 | \( 1 + (0.610 + 0.791i)T \) |
| 73 | \( 1 + (0.0855 - 0.996i)T \) |
| 79 | \( 1 + (-0.466 + 0.884i)T \) |
| 83 | \( 1 + (0.516 - 0.856i)T \) |
| 89 | \( 1 + (0.610 - 0.791i)T \) |
| 97 | \( 1 + (-0.466 - 0.884i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.76233752381725157720866942194, −18.29047424399817144189799991051, −17.51625396831636333646692617501, −16.753179410585694088076525970447, −16.147205776340754736201787113985, −15.05079876356506771226229665176, −14.62439035450968253345485812100, −13.96450744844189529481059491421, −13.47574817540503919653718592021, −12.26961155677378818762864205184, −11.494767338735399972367971540102, −11.06327910232970167907720708985, −10.47353574127736171990839463288, −9.94706213677655161519055121574, −9.11776939667124119777425128790, −8.28249521790498326944089204731, −7.89758621154929480095702402215, −6.90711781923438411557672541515, −5.621744876590704564264985050250, −5.02562755044722279249737397263, −4.07268768072572643988039462970, −3.50281662068618268357777927287, −2.97316469018568640588766006681, −1.965134195791157738362904565558, −1.13992816360260435397020371933,
0.67062822321977011565279904955, 1.21915951410298996948308814867, 2.055513183342233606588212123266, 3.372464212383644803066873563819, 4.31432656092913689143517267277, 5.139566638687312989262603668271, 5.69438260211949866946447778568, 6.483424328042968108966270569796, 7.32322449279631012834179744884, 8.096426396001105547340731144824, 8.36265921708589011779955310334, 9.0164834413482799346150729277, 9.73671716525758476808732303971, 10.98187792444282860677697575079, 11.60094769828798535777669561407, 12.50779355536992208467187351816, 13.17636956248810672157657915609, 13.59428422789664696949076751174, 14.441871193770310667113329594608, 15.0391559903767491138393808882, 15.68238259005447807346656493923, 16.56685096526239773859299672184, 17.22857692081556452259295720817, 17.6103618371824707752199493041, 18.494792310146544163058472163213