Properties

Label 1-3751-3751.2234-r0-0-0
Degree $1$
Conductor $3751$
Sign $0.249 - 0.968i$
Analytic cond. $17.4195$
Root an. cond. $17.4195$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.254 + 0.967i)2-s + (0.309 − 0.951i)3-s + (−0.870 − 0.491i)4-s + (−0.142 − 0.989i)5-s + (0.841 + 0.540i)6-s + (0.974 + 0.226i)7-s + (0.696 − 0.717i)8-s + (−0.809 − 0.587i)9-s + (0.993 + 0.113i)10-s + (−0.736 + 0.676i)12-s + (0.993 − 0.113i)13-s + (−0.466 + 0.884i)14-s + (−0.985 − 0.170i)15-s + (0.516 + 0.856i)16-s + (0.941 + 0.336i)17-s + (0.774 − 0.633i)18-s + ⋯
L(s)  = 1  + (−0.254 + 0.967i)2-s + (0.309 − 0.951i)3-s + (−0.870 − 0.491i)4-s + (−0.142 − 0.989i)5-s + (0.841 + 0.540i)6-s + (0.974 + 0.226i)7-s + (0.696 − 0.717i)8-s + (−0.809 − 0.587i)9-s + (0.993 + 0.113i)10-s + (−0.736 + 0.676i)12-s + (0.993 − 0.113i)13-s + (−0.466 + 0.884i)14-s + (−0.985 − 0.170i)15-s + (0.516 + 0.856i)16-s + (0.941 + 0.336i)17-s + (0.774 − 0.633i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.249 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.249 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(3751\)    =    \(11^{2} \cdot 31\)
Sign: $0.249 - 0.968i$
Analytic conductor: \(17.4195\)
Root analytic conductor: \(17.4195\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3751} (2234, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 3751,\ (0:\ ),\ 0.249 - 0.968i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.449322208 - 1.122726320i\)
\(L(\frac12)\) \(\approx\) \(1.449322208 - 1.122726320i\)
\(L(1)\) \(\approx\) \(1.111250094 - 0.2066420370i\)
\(L(1)\) \(\approx\) \(1.111250094 - 0.2066420370i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
31 \( 1 \)
good2 \( 1 + (-0.254 + 0.967i)T \)
3 \( 1 + (0.309 - 0.951i)T \)
5 \( 1 + (-0.142 - 0.989i)T \)
7 \( 1 + (0.974 + 0.226i)T \)
13 \( 1 + (0.993 - 0.113i)T \)
17 \( 1 + (0.941 + 0.336i)T \)
19 \( 1 + (-0.0285 - 0.999i)T \)
23 \( 1 + (0.974 - 0.226i)T \)
29 \( 1 + (-0.0285 - 0.999i)T \)
37 \( 1 + (0.415 - 0.909i)T \)
41 \( 1 + (-0.254 + 0.967i)T \)
43 \( 1 + (-0.985 + 0.170i)T \)
47 \( 1 + (-0.254 - 0.967i)T \)
53 \( 1 + (0.0855 + 0.996i)T \)
59 \( 1 + (-0.254 - 0.967i)T \)
61 \( 1 + (0.841 - 0.540i)T \)
67 \( 1 + (0.841 + 0.540i)T \)
71 \( 1 + (0.610 + 0.791i)T \)
73 \( 1 + (0.0855 - 0.996i)T \)
79 \( 1 + (-0.466 + 0.884i)T \)
83 \( 1 + (0.516 - 0.856i)T \)
89 \( 1 + (0.610 - 0.791i)T \)
97 \( 1 + (-0.466 - 0.884i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.76233752381725157720866942194, −18.29047424399817144189799991051, −17.51625396831636333646692617501, −16.753179410585694088076525970447, −16.147205776340754736201787113985, −15.05079876356506771226229665176, −14.62439035450968253345485812100, −13.96450744844189529481059491421, −13.47574817540503919653718592021, −12.26961155677378818762864205184, −11.494767338735399972367971540102, −11.06327910232970167907720708985, −10.47353574127736171990839463288, −9.94706213677655161519055121574, −9.11776939667124119777425128790, −8.28249521790498326944089204731, −7.89758621154929480095702402215, −6.90711781923438411557672541515, −5.621744876590704564264985050250, −5.02562755044722279249737397263, −4.07268768072572643988039462970, −3.50281662068618268357777927287, −2.97316469018568640588766006681, −1.965134195791157738362904565558, −1.13992816360260435397020371933, 0.67062822321977011565279904955, 1.21915951410298996948308814867, 2.055513183342233606588212123266, 3.372464212383644803066873563819, 4.31432656092913689143517267277, 5.139566638687312989262603668271, 5.69438260211949866946447778568, 6.483424328042968108966270569796, 7.32322449279631012834179744884, 8.096426396001105547340731144824, 8.36265921708589011779955310334, 9.0164834413482799346150729277, 9.73671716525758476808732303971, 10.98187792444282860677697575079, 11.60094769828798535777669561407, 12.50779355536992208467187351816, 13.17636956248810672157657915609, 13.59428422789664696949076751174, 14.441871193770310667113329594608, 15.0391559903767491138393808882, 15.68238259005447807346656493923, 16.56685096526239773859299672184, 17.22857692081556452259295720817, 17.6103618371824707752199493041, 18.494792310146544163058472163213

Graph of the $Z$-function along the critical line