L(s) = 1 | + (0.841 + 0.540i)2-s + (−0.5 − 0.866i)3-s + (0.415 + 0.909i)4-s + (0.928 + 0.371i)5-s + (0.0475 − 0.998i)6-s + (−0.327 + 0.945i)7-s + (−0.142 + 0.989i)8-s + (−0.5 + 0.866i)9-s + (0.580 + 0.814i)10-s + (0.580 − 0.814i)12-s + (−0.995 − 0.0950i)13-s + (−0.786 + 0.618i)14-s + (−0.142 − 0.989i)15-s + (−0.654 + 0.755i)16-s + (0.723 + 0.690i)17-s + (−0.888 + 0.458i)18-s + ⋯ |
L(s) = 1 | + (0.841 + 0.540i)2-s + (−0.5 − 0.866i)3-s + (0.415 + 0.909i)4-s + (0.928 + 0.371i)5-s + (0.0475 − 0.998i)6-s + (−0.327 + 0.945i)7-s + (−0.142 + 0.989i)8-s + (−0.5 + 0.866i)9-s + (0.580 + 0.814i)10-s + (0.580 − 0.814i)12-s + (−0.995 − 0.0950i)13-s + (−0.786 + 0.618i)14-s + (−0.142 − 0.989i)15-s + (−0.654 + 0.755i)16-s + (0.723 + 0.690i)17-s + (−0.888 + 0.458i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02434751037 + 1.680166936i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02434751037 + 1.680166936i\) |
\(L(1)\) |
\(\approx\) |
\(1.191640943 + 0.6884412161i\) |
\(L(1)\) |
\(\approx\) |
\(1.191640943 + 0.6884412161i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.841 + 0.540i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.928 + 0.371i)T \) |
| 7 | \( 1 + (-0.327 + 0.945i)T \) |
| 13 | \( 1 + (-0.995 - 0.0950i)T \) |
| 17 | \( 1 + (0.723 + 0.690i)T \) |
| 19 | \( 1 + (0.235 + 0.971i)T \) |
| 23 | \( 1 + (-0.654 + 0.755i)T \) |
| 29 | \( 1 + (-0.959 - 0.281i)T \) |
| 37 | \( 1 + (-0.995 + 0.0950i)T \) |
| 41 | \( 1 + (-0.888 + 0.458i)T \) |
| 43 | \( 1 + (0.928 - 0.371i)T \) |
| 47 | \( 1 + (0.841 - 0.540i)T \) |
| 53 | \( 1 + (0.981 - 0.189i)T \) |
| 59 | \( 1 + (-0.888 - 0.458i)T \) |
| 61 | \( 1 + (0.841 - 0.540i)T \) |
| 67 | \( 1 + (-0.888 + 0.458i)T \) |
| 71 | \( 1 + (0.723 - 0.690i)T \) |
| 73 | \( 1 + (-0.327 - 0.945i)T \) |
| 79 | \( 1 + (-0.786 + 0.618i)T \) |
| 83 | \( 1 + (0.981 - 0.189i)T \) |
| 89 | \( 1 + (-0.959 + 0.281i)T \) |
| 97 | \( 1 + (-0.142 + 0.989i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.20318355711302381255477843682, −17.41725926044517476758578748862, −16.78207218268831323153898706435, −16.26955030267420748427132774666, −15.526653991572576239264977082674, −14.63102688028145366214770652571, −14.096789357741444103375322090326, −13.56654196830366493271870346606, −12.64400944724196502938323821220, −12.16125588555602944808964727296, −11.32142398843833543871819513052, −10.51991512362185990585874832945, −10.10869255379354140309462119515, −9.51903119020535781637850055582, −8.90702317068617169509732146591, −7.32707043735958953445808484245, −6.781008008599101437865905453083, −5.832673373291525361563820940772, −5.30387232312706957614103575108, −4.62648605695880164643120785308, −4.03820299195208264429519474281, −3.07969095001693219789841306028, −2.409063114007652381819853826861, −1.23221647249583430703795710090, −0.34635591719601949438338925498,
1.66725897136938451239708763708, 2.133723040225030897961425447031, 2.95382620819476751656512574427, 3.79175394609169632840798630654, 5.22423966012305705128371790536, 5.48828124878027080999376449854, 6.06226365551640634886730681049, 6.73788347864198324394197643335, 7.51333889945608555074794430151, 8.10397294441957822644252620565, 9.0737121801883567178630126772, 9.979775081178766309640010430820, 10.72975673202663508525617845397, 11.85476373141712480037656821611, 12.111836493664156245931237935185, 12.791493245816368266756783284559, 13.44234936985474747164745456087, 14.117916485728739941432239861657, 14.71136839465260799289184033813, 15.366764885078262654108742749234, 16.32872025745049619886074521394, 16.98316241285424805916912892341, 17.40306052664167946402760787065, 18.19333452110182160419312909680, 18.77914942466578169235779640983