L(s) = 1 | + (0.564 − 0.825i)2-s + (0.809 + 0.587i)3-s + (−0.362 − 0.931i)4-s + (0.0855 − 0.996i)5-s + (0.941 − 0.336i)6-s + (0.870 − 0.491i)7-s + (−0.974 − 0.226i)8-s + (0.309 + 0.951i)9-s + (−0.774 − 0.633i)10-s + (0.254 − 0.967i)12-s + (−0.998 + 0.0570i)13-s + (0.0855 − 0.996i)14-s + (0.654 − 0.755i)15-s + (−0.736 + 0.676i)16-s + (−0.142 − 0.989i)17-s + (0.959 + 0.281i)18-s + ⋯ |
L(s) = 1 | + (0.564 − 0.825i)2-s + (0.809 + 0.587i)3-s + (−0.362 − 0.931i)4-s + (0.0855 − 0.996i)5-s + (0.941 − 0.336i)6-s + (0.870 − 0.491i)7-s + (−0.974 − 0.226i)8-s + (0.309 + 0.951i)9-s + (−0.774 − 0.633i)10-s + (0.254 − 0.967i)12-s + (−0.998 + 0.0570i)13-s + (0.0855 − 0.996i)14-s + (0.654 − 0.755i)15-s + (−0.736 + 0.676i)16-s + (−0.142 − 0.989i)17-s + (0.959 + 0.281i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0177i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0177i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02086880194 - 2.354833815i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02086880194 - 2.354833815i\) |
\(L(1)\) |
\(\approx\) |
\(1.267218629 - 1.048794143i\) |
\(L(1)\) |
\(\approx\) |
\(1.267218629 - 1.048794143i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.564 - 0.825i)T \) |
| 3 | \( 1 + (0.809 + 0.587i)T \) |
| 5 | \( 1 + (0.0855 - 0.996i)T \) |
| 7 | \( 1 + (0.870 - 0.491i)T \) |
| 13 | \( 1 + (-0.998 + 0.0570i)T \) |
| 17 | \( 1 + (-0.142 - 0.989i)T \) |
| 19 | \( 1 + (0.142 - 0.989i)T \) |
| 23 | \( 1 + (-0.198 + 0.980i)T \) |
| 29 | \( 1 + (-0.466 - 0.884i)T \) |
| 37 | \( 1 + (-0.774 - 0.633i)T \) |
| 41 | \( 1 + (0.959 + 0.281i)T \) |
| 43 | \( 1 + (0.516 - 0.856i)T \) |
| 47 | \( 1 + (0.941 + 0.336i)T \) |
| 53 | \( 1 + (-0.993 - 0.113i)T \) |
| 59 | \( 1 + (-0.959 + 0.281i)T \) |
| 61 | \( 1 + (0.610 - 0.791i)T \) |
| 67 | \( 1 + (-0.959 - 0.281i)T \) |
| 71 | \( 1 + (-0.142 + 0.989i)T \) |
| 73 | \( 1 + (0.198 - 0.980i)T \) |
| 79 | \( 1 + (-0.921 - 0.389i)T \) |
| 83 | \( 1 + (-0.870 + 0.491i)T \) |
| 89 | \( 1 + (-0.696 - 0.717i)T \) |
| 97 | \( 1 + (-0.654 - 0.755i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.74879710271112208370369879014, −18.27057155126122679861272010611, −17.6029211319733398277693891797, −17.05143751133884384324349811048, −15.98893006676046683157104825888, −15.07411098723314141663497138559, −14.84886499072653663346922918273, −14.235819709132644418963666231377, −13.884968355647719003174049059237, −12.652973872406892083334258925205, −12.449528736106902025578451420206, −11.59077036758140777617842133579, −10.64226669938322421437636860773, −9.75120829651417503364304362847, −8.837900367336130872172830762827, −8.23204262235813337657551443724, −7.57898135159348376012546539100, −7.099829497436965769870762303018, −6.204777443556196707881783503501, −5.6964925311305077051536835018, −4.59162209191609368084603284662, −3.866893599853111050224514276909, −2.987632982494322937160076043386, −2.38242741514159232184171283514, −1.5710966687629029849812627528,
0.432274297482015535451491924130, 1.53777765256642347551258931838, 2.21262833242203646730105127716, 2.97300461263591174820878871270, 4.04404274020112762876185300096, 4.48567341827418211256982059202, 5.08844091489419473226740374803, 5.66204109399555259262950936134, 7.21218150789675183844894438856, 7.746433660663574425757396493969, 8.77338670406091068231990540347, 9.34299027563035756346745055788, 9.77095045812524704177719497273, 10.69009884612168450914035233617, 11.374671272008419412488554393736, 12.00880024289697834147566018433, 12.87408928488602004337038838417, 13.569084525050272179880947178102, 14.01118400467566012973307753684, 14.59422785014159507806772904450, 15.58113568463934779925234571268, 15.811486226152169812449618972272, 17.07490528471134144076663230924, 17.47048942337631212766671819079, 18.427593304174322660964313045431