| L(s) = 1 | + (0.941 − 0.336i)2-s + (0.309 − 0.951i)3-s + (0.774 − 0.633i)4-s + (−0.921 − 0.389i)5-s + (−0.0285 − 0.999i)6-s + (−0.736 − 0.676i)7-s + (0.516 − 0.856i)8-s + (−0.809 − 0.587i)9-s + (−0.998 − 0.0570i)10-s + (−0.362 − 0.931i)12-s + (−0.254 + 0.967i)13-s + (−0.921 − 0.389i)14-s + (−0.654 + 0.755i)15-s + (0.198 − 0.980i)16-s + (−0.142 − 0.989i)17-s + (−0.959 − 0.281i)18-s + ⋯ |
| L(s) = 1 | + (0.941 − 0.336i)2-s + (0.309 − 0.951i)3-s + (0.774 − 0.633i)4-s + (−0.921 − 0.389i)5-s + (−0.0285 − 0.999i)6-s + (−0.736 − 0.676i)7-s + (0.516 − 0.856i)8-s + (−0.809 − 0.587i)9-s + (−0.998 − 0.0570i)10-s + (−0.362 − 0.931i)12-s + (−0.254 + 0.967i)13-s + (−0.921 − 0.389i)14-s + (−0.654 + 0.755i)15-s + (0.198 − 0.980i)16-s + (−0.142 − 0.989i)17-s + (−0.959 − 0.281i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.05396539283 + 0.02897213595i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.05396539283 + 0.02897213595i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9492055630 - 0.8080680441i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9492055630 - 0.8080680441i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
| good | 2 | \( 1 + (0.941 - 0.336i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 5 | \( 1 + (-0.921 - 0.389i)T \) |
| 7 | \( 1 + (-0.736 - 0.676i)T \) |
| 13 | \( 1 + (-0.254 + 0.967i)T \) |
| 17 | \( 1 + (-0.142 - 0.989i)T \) |
| 19 | \( 1 + (-0.142 + 0.989i)T \) |
| 23 | \( 1 + (0.993 - 0.113i)T \) |
| 29 | \( 1 + (-0.985 + 0.170i)T \) |
| 37 | \( 1 + (-0.998 - 0.0570i)T \) |
| 41 | \( 1 + (-0.959 - 0.281i)T \) |
| 43 | \( 1 + (0.0855 + 0.996i)T \) |
| 47 | \( 1 + (-0.0285 + 0.999i)T \) |
| 53 | \( 1 + (-0.870 + 0.491i)T \) |
| 59 | \( 1 + (-0.959 + 0.281i)T \) |
| 61 | \( 1 + (-0.564 - 0.825i)T \) |
| 67 | \( 1 + (-0.959 - 0.281i)T \) |
| 71 | \( 1 + (-0.142 + 0.989i)T \) |
| 73 | \( 1 + (0.993 - 0.113i)T \) |
| 79 | \( 1 + (0.974 - 0.226i)T \) |
| 83 | \( 1 + (-0.736 - 0.676i)T \) |
| 89 | \( 1 + (0.897 - 0.441i)T \) |
| 97 | \( 1 + (-0.654 - 0.755i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.47681746518374492109580380522, −18.72834817142587540779742819389, −17.51163655082509557334533305420, −16.86958043139013191002379618642, −16.17211450521857583428205265954, −15.35617050366076679879268841529, −15.20884650557551065047328099604, −14.84853450625189989678351908130, −13.690523552032078278367025305996, −13.08881245839196668194932177399, −12.329147036318017990480748925125, −11.69031697106283317865831219973, −10.799025968379443641496737349351, −10.50475266195304387406865787440, −9.319229331008077741004040116201, −8.58278725729675315265591437693, −7.97101912381027944391306173856, −7.08987807323773215784389747930, −6.38612934619517523353417907132, −5.43455614477108987566115728977, −4.961933146696318006632789874146, −3.9997153643806770813635780953, −3.36085906013914963655370551343, −2.95799175955589522552344172246, −2.077786902796739951169029759957,
0.01146546764135232575786863558, 1.134913368174718594542450222133, 1.83812276710155539243793221130, 3.01600203738193762260297140068, 3.406787839097754272728785445177, 4.289602065619238630102811144503, 4.982610141779426427714573810726, 6.03203194793329898855326500858, 6.77857084415517636768877789709, 7.27283503724005359641107049866, 7.85280269693790134308186869714, 9.034888805234309641942007210402, 9.55405735529473603281197579544, 10.72871622902637037499648906521, 11.34733148804029560811463646623, 12.04834843100994716681025027077, 12.552950756775558220770052457618, 13.12472098086720607844179405075, 13.86761252003986471609693414213, 14.34303065106268353168338967243, 15.14349019505041250600643055869, 15.91568409492874262789740066525, 16.62426425392086645054705826295, 17.07178505775165344632942324976, 18.4758865136110498814237090644