L(s) = 1 | + (−0.415 + 0.909i)2-s + (−0.913 − 0.406i)3-s + (−0.654 − 0.755i)4-s + (−0.179 + 0.983i)5-s + (0.749 − 0.662i)6-s + (0.786 − 0.618i)7-s + (0.959 − 0.281i)8-s + (0.669 + 0.743i)9-s + (−0.820 − 0.572i)10-s + (0.290 + 0.956i)12-s + (0.483 + 0.875i)13-s + (0.235 + 0.971i)14-s + (0.564 − 0.825i)15-s + (−0.142 + 0.989i)16-s + (−0.625 + 0.780i)17-s + (−0.953 + 0.299i)18-s + ⋯ |
L(s) = 1 | + (−0.415 + 0.909i)2-s + (−0.913 − 0.406i)3-s + (−0.654 − 0.755i)4-s + (−0.179 + 0.983i)5-s + (0.749 − 0.662i)6-s + (0.786 − 0.618i)7-s + (0.959 − 0.281i)8-s + (0.669 + 0.743i)9-s + (−0.820 − 0.572i)10-s + (0.290 + 0.956i)12-s + (0.483 + 0.875i)13-s + (0.235 + 0.971i)14-s + (0.564 − 0.825i)15-s + (−0.142 + 0.989i)16-s + (−0.625 + 0.780i)17-s + (−0.953 + 0.299i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.652 - 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.652 - 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3522903547 - 0.1614548043i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3522903547 - 0.1614548043i\) |
\(L(1)\) |
\(\approx\) |
\(0.5421360693 + 0.2143159921i\) |
\(L(1)\) |
\(\approx\) |
\(0.5421360693 + 0.2143159921i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.415 + 0.909i)T \) |
| 3 | \( 1 + (-0.913 - 0.406i)T \) |
| 5 | \( 1 + (-0.179 + 0.983i)T \) |
| 7 | \( 1 + (0.786 - 0.618i)T \) |
| 13 | \( 1 + (0.483 + 0.875i)T \) |
| 17 | \( 1 + (-0.625 + 0.780i)T \) |
| 19 | \( 1 + (-0.161 + 0.986i)T \) |
| 23 | \( 1 + (0.985 - 0.170i)T \) |
| 29 | \( 1 + (-0.998 - 0.0570i)T \) |
| 37 | \( 1 + (-0.123 - 0.992i)T \) |
| 41 | \( 1 + (0.595 - 0.803i)T \) |
| 43 | \( 1 + (-0.991 - 0.132i)T \) |
| 47 | \( 1 + (-0.870 - 0.491i)T \) |
| 53 | \( 1 + (-0.640 + 0.768i)T \) |
| 59 | \( 1 + (-0.595 - 0.803i)T \) |
| 61 | \( 1 + (-0.870 - 0.491i)T \) |
| 67 | \( 1 + (0.580 + 0.814i)T \) |
| 71 | \( 1 + (0.548 - 0.836i)T \) |
| 73 | \( 1 + (-0.786 - 0.618i)T \) |
| 79 | \( 1 + (0.997 + 0.0760i)T \) |
| 83 | \( 1 + (0.640 - 0.768i)T \) |
| 89 | \( 1 + (-0.774 + 0.633i)T \) |
| 97 | \( 1 + (0.610 - 0.791i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.40745124832565074996544529412, −18.1247808044952101846860711170, −17.32665527339178214070231884810, −16.97135171746866463714969138424, −16.06494828331611793683120330424, −15.493505752039383997437179186639, −14.766656516695340903906296347, −13.35145467537726366774769285708, −13.10692389703162820695254005167, −12.30227823686327671339810872705, −11.55171012365113742946485610661, −11.253048291291972130367044604196, −10.6000231434456027011595417932, −9.47431444884263758736921270413, −9.2086831343699664396545359390, −8.37199487778905366659348935185, −7.720603476078628542109491397224, −6.67140009585671387116717440787, −5.52250768651132317457572939247, −4.90962410785751891410056593892, −4.59545357297129019199285540768, −3.544473553749011388873764933663, −2.654789840026964365967500410456, −1.50509361678355271000383462951, −0.92185948564973802397612234971,
0.18163802480833328752296961405, 1.53965618192201944963069303334, 1.92603023425124644944065560980, 3.698569064578945998253427015614, 4.28913894305346013590783120097, 5.13178941994808689077757551470, 6.00523691412586110244551580061, 6.53714660562743096400500448846, 7.16918861201273819169844457913, 7.73000564017325352178846525071, 8.44145705945667321628040711214, 9.435446823067973041267825342702, 10.363037783131276767817185634999, 10.96121852792225680205464407817, 11.17550950136106239239043797146, 12.28306900794094274018983590895, 13.22311224673380175044023215036, 13.8561229711605647488296094548, 14.51099413367520213904065314014, 15.11693004230519336315079987612, 15.8780023106828002107160176064, 16.77392686467833066360675968027, 17.01014162311985033359426219102, 17.904283695285751803123469203938, 18.249086171501169886404438183673