L(s) = 1 | + (0.362 − 0.931i)2-s + (−0.913 + 0.406i)3-s + (−0.736 − 0.676i)4-s + (0.928 − 0.371i)5-s + (0.0475 + 0.998i)6-s + (0.999 − 0.0190i)7-s + (−0.897 + 0.441i)8-s + (0.669 − 0.743i)9-s + (−0.00951 − 0.999i)10-s + (0.948 + 0.318i)12-s + (0.861 + 0.508i)13-s + (0.345 − 0.938i)14-s + (−0.696 + 0.717i)15-s + (0.0855 + 0.996i)16-s + (0.879 + 0.475i)17-s + (−0.449 − 0.893i)18-s + ⋯ |
L(s) = 1 | + (0.362 − 0.931i)2-s + (−0.913 + 0.406i)3-s + (−0.736 − 0.676i)4-s + (0.928 − 0.371i)5-s + (0.0475 + 0.998i)6-s + (0.999 − 0.0190i)7-s + (−0.897 + 0.441i)8-s + (0.669 − 0.743i)9-s + (−0.00951 − 0.999i)10-s + (0.948 + 0.318i)12-s + (0.861 + 0.508i)13-s + (0.345 − 0.938i)14-s + (−0.696 + 0.717i)15-s + (0.0855 + 0.996i)16-s + (0.879 + 0.475i)17-s + (−0.449 − 0.893i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0958 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0958 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.581368780 - 1.436455384i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.581368780 - 1.436455384i\) |
\(L(1)\) |
\(\approx\) |
\(1.123734810 - 0.5935518539i\) |
\(L(1)\) |
\(\approx\) |
\(1.123734810 - 0.5935518539i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.362 - 0.931i)T \) |
| 3 | \( 1 + (-0.913 + 0.406i)T \) |
| 5 | \( 1 + (0.928 - 0.371i)T \) |
| 7 | \( 1 + (0.999 - 0.0190i)T \) |
| 13 | \( 1 + (0.861 + 0.508i)T \) |
| 17 | \( 1 + (0.879 + 0.475i)T \) |
| 19 | \( 1 + (-0.380 - 0.924i)T \) |
| 23 | \( 1 + (-0.516 + 0.856i)T \) |
| 29 | \( 1 + (0.610 - 0.791i)T \) |
| 37 | \( 1 + (0.995 + 0.0950i)T \) |
| 41 | \( 1 + (-0.988 + 0.151i)T \) |
| 43 | \( 1 + (-0.969 + 0.244i)T \) |
| 47 | \( 1 + (-0.362 - 0.931i)T \) |
| 53 | \( 1 + (-0.123 - 0.992i)T \) |
| 59 | \( 1 + (0.988 + 0.151i)T \) |
| 61 | \( 1 + (0.841 + 0.540i)T \) |
| 67 | \( 1 + (-0.888 - 0.458i)T \) |
| 71 | \( 1 + (-0.432 + 0.901i)T \) |
| 73 | \( 1 + (0.797 + 0.603i)T \) |
| 79 | \( 1 + (0.345 - 0.938i)T \) |
| 83 | \( 1 + (-0.905 + 0.424i)T \) |
| 89 | \( 1 + (0.564 - 0.825i)T \) |
| 97 | \( 1 + (-0.985 - 0.170i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.36824192561597432151159406848, −18.01897961986506060271384077485, −17.44123632733595071388932060732, −16.62378091109023722342904487325, −16.35039443317845404645059788990, −15.30181183153452082708999063064, −14.553842868108495981092110938037, −14.03745437032708353396986217935, −13.4138123588547778312231368438, −12.63060866695656074372868157953, −12.06924122284377343283339615771, −11.19236480159733834449426280843, −10.42486777109891577410457296958, −9.85158835825298047537922792484, −8.671850499643388794103255161594, −8.06725953923532906077082358643, −7.3914674882945982815009624003, −6.49266860384591327730860464806, −6.05606690065346064501685312338, −5.348054367148363191784794339565, −4.86000484862129438214295998665, −3.88676335060200248944413947542, −2.8328302115464118622565580606, −1.7363562707727604347745460300, −0.92728887535641554431999053238,
0.798448173889582526244791726872, 1.49903172547112745600104722790, 2.130408077372829009608124048639, 3.36851043419190178282897815923, 4.218021712686801175379011361159, 4.80647483993936638154134076886, 5.486236512177971350978729945925, 6.01832858008541670005363417724, 6.8183217986503821783637984834, 8.247397043227851242943302832452, 8.80413489053359442360270898393, 9.8074189263604690789138692314, 10.090283594449830798089562955588, 10.940909733211264437498814640991, 11.61252856290737717034864789108, 11.91062456190930575465654581183, 13.0491665732104811227558691693, 13.367927877484319617863933332814, 14.23869671577903333926394891055, 14.88975390351625272366936060403, 15.64449735640836722439959249890, 16.65515969234206561800902845756, 17.19169797833748198214488004409, 17.98196497648263864213201895599, 18.155516746164965433493414227962