L(s) = 1 | + (−0.142 + 0.989i)2-s + (−0.104 + 0.994i)3-s + (−0.959 − 0.281i)4-s + (0.749 + 0.662i)5-s + (−0.969 − 0.244i)6-s + (−0.888 − 0.458i)7-s + (0.415 − 0.909i)8-s + (−0.978 − 0.207i)9-s + (−0.761 + 0.647i)10-s + (0.380 − 0.924i)12-s + (−0.432 − 0.901i)13-s + (0.580 − 0.814i)14-s + (−0.736 + 0.676i)15-s + (0.841 + 0.540i)16-s + (−0.905 + 0.424i)17-s + (0.345 − 0.938i)18-s + ⋯ |
L(s) = 1 | + (−0.142 + 0.989i)2-s + (−0.104 + 0.994i)3-s + (−0.959 − 0.281i)4-s + (0.749 + 0.662i)5-s + (−0.969 − 0.244i)6-s + (−0.888 − 0.458i)7-s + (0.415 − 0.909i)8-s + (−0.978 − 0.207i)9-s + (−0.761 + 0.647i)10-s + (0.380 − 0.924i)12-s + (−0.432 − 0.901i)13-s + (0.580 − 0.814i)14-s + (−0.736 + 0.676i)15-s + (0.841 + 0.540i)16-s + (−0.905 + 0.424i)17-s + (0.345 − 0.938i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0376 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0376 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3199807429 + 0.3322788836i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.3199807429 + 0.3322788836i\) |
\(L(1)\) |
\(\approx\) |
\(0.4836748191 + 0.5732835424i\) |
\(L(1)\) |
\(\approx\) |
\(0.4836748191 + 0.5732835424i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.142 + 0.989i)T \) |
| 3 | \( 1 + (-0.104 + 0.994i)T \) |
| 5 | \( 1 + (0.749 + 0.662i)T \) |
| 7 | \( 1 + (-0.888 - 0.458i)T \) |
| 13 | \( 1 + (-0.432 - 0.901i)T \) |
| 17 | \( 1 + (-0.905 + 0.424i)T \) |
| 19 | \( 1 + (0.797 + 0.603i)T \) |
| 23 | \( 1 + (0.774 - 0.633i)T \) |
| 29 | \( 1 + (0.974 + 0.226i)T \) |
| 37 | \( 1 + (0.879 - 0.475i)T \) |
| 41 | \( 1 + (-0.830 + 0.556i)T \) |
| 43 | \( 1 + (0.861 + 0.508i)T \) |
| 47 | \( 1 + (-0.466 + 0.884i)T \) |
| 53 | \( 1 + (-0.935 + 0.353i)T \) |
| 59 | \( 1 + (-0.830 - 0.556i)T \) |
| 61 | \( 1 + (-0.466 + 0.884i)T \) |
| 67 | \( 1 + (-0.786 - 0.618i)T \) |
| 71 | \( 1 + (-0.683 + 0.730i)T \) |
| 73 | \( 1 + (-0.888 + 0.458i)T \) |
| 79 | \( 1 + (0.953 + 0.299i)T \) |
| 83 | \( 1 + (-0.935 + 0.353i)T \) |
| 89 | \( 1 + (-0.921 - 0.389i)T \) |
| 97 | \( 1 + (-0.870 + 0.491i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.182642548423770744757108213796, −17.6206866324650242874834103912, −16.98935167793750482703887322317, −16.36374676558254653739607692877, −15.37081765309606105328344015703, −14.17790362102056356398847877184, −13.644863090543984763524255587377, −13.21214613288947537993748024212, −12.598712202837168441020037268498, −11.86099187460629458844792019828, −11.51221297698327878851386264277, −10.442130704490134891070907879492, −9.570447901320317503938145091195, −9.084271369825739676476672151902, −8.64811226474054266254475422918, −7.53491879879029126133064785279, −6.74754617945004957509655093983, −6.00485358101533610333188900176, −5.12288252018268362115017997854, −4.56567764328065567580359881603, −3.22968210911521332335382736237, −2.6032481516884866791744332161, −1.94388580642277164947701987265, −1.13885824952804313179360912284, −0.15999317155386269372778849725,
1.148579259409083242964974320734, 2.80570105834619822675118490760, 3.21121388003145200708856188811, 4.27725470668952174728759951190, 4.895939441537727033161455540080, 5.87947306236461067320561844430, 6.19262330618204358231211345456, 7.01289721290592875807102136804, 7.81181687800359802021871331879, 8.75010086548413866390279554740, 9.46536341615285939110865596309, 9.96581430517895879918828956142, 10.49787844835878136686278068511, 11.12243160765282920060884336386, 12.52264623198810815154045279484, 13.09348965948016178840111881364, 13.951742471457707144772659531408, 14.41408821605034559452158334402, 15.16959372091053461376095976951, 15.65332888334998053067313448971, 16.43515811184777132093898577872, 16.91992264476802911421365092127, 17.663196105258301945620169529581, 18.05719322653912572905238838080, 19.05113906013757168172353846829