| L(s) = 1 | + (0.142 − 0.989i)2-s + (0.104 + 0.994i)3-s + (−0.959 − 0.281i)4-s + (0.00951 + 0.999i)5-s + (0.999 + 0.0380i)6-s + (−0.0475 − 0.998i)7-s + (−0.415 + 0.909i)8-s + (−0.978 + 0.207i)9-s + (0.991 + 0.132i)10-s + (0.179 − 0.983i)12-s + (−0.851 + 0.524i)13-s + (−0.995 − 0.0950i)14-s + (−0.993 + 0.113i)15-s + (0.841 + 0.540i)16-s + (−0.290 + 0.956i)17-s + (0.0665 + 0.997i)18-s + ⋯ |
| L(s) = 1 | + (0.142 − 0.989i)2-s + (0.104 + 0.994i)3-s + (−0.959 − 0.281i)4-s + (0.00951 + 0.999i)5-s + (0.999 + 0.0380i)6-s + (−0.0475 − 0.998i)7-s + (−0.415 + 0.909i)8-s + (−0.978 + 0.207i)9-s + (0.991 + 0.132i)10-s + (0.179 − 0.983i)12-s + (−0.851 + 0.524i)13-s + (−0.995 − 0.0950i)14-s + (−0.993 + 0.113i)15-s + (0.841 + 0.540i)16-s + (−0.290 + 0.956i)17-s + (0.0665 + 0.997i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.511 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.511 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7947180633 - 0.4515762338i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7947180633 - 0.4515762338i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8421770270 - 0.1059938038i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8421770270 - 0.1059938038i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
| good | 2 | \( 1 + (0.142 - 0.989i)T \) |
| 3 | \( 1 + (0.104 + 0.994i)T \) |
| 5 | \( 1 + (0.00951 + 0.999i)T \) |
| 7 | \( 1 + (-0.0475 - 0.998i)T \) |
| 13 | \( 1 + (-0.851 + 0.524i)T \) |
| 17 | \( 1 + (-0.290 + 0.956i)T \) |
| 19 | \( 1 + (-0.483 - 0.875i)T \) |
| 23 | \( 1 + (0.254 - 0.967i)T \) |
| 29 | \( 1 + (0.0855 + 0.996i)T \) |
| 37 | \( 1 + (-0.997 + 0.0760i)T \) |
| 41 | \( 1 + (-0.640 - 0.768i)T \) |
| 43 | \( 1 + (-0.948 - 0.318i)T \) |
| 47 | \( 1 + (0.696 + 0.717i)T \) |
| 53 | \( 1 + (0.710 - 0.703i)T \) |
| 59 | \( 1 + (0.640 - 0.768i)T \) |
| 61 | \( 1 + (0.696 + 0.717i)T \) |
| 67 | \( 1 + (0.928 - 0.371i)T \) |
| 71 | \( 1 + (0.820 - 0.572i)T \) |
| 73 | \( 1 + (0.0475 - 0.998i)T \) |
| 79 | \( 1 + (-0.398 + 0.917i)T \) |
| 83 | \( 1 + (-0.710 + 0.703i)T \) |
| 89 | \( 1 + (-0.516 - 0.856i)T \) |
| 97 | \( 1 + (0.198 + 0.980i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.56000995040271490106573886026, −17.98033473382014811945319183160, −17.17896602458573696967666685825, −16.91775952382774577073883575668, −15.88553667400211343121484752128, −15.36740687454787140517779454465, −14.65086980770604569439565459968, −13.8713359220351939064336927032, −13.19223584781881944415606713534, −12.72817011707014512789391843129, −11.9736791976717858413342648189, −11.65912812883166483577045360131, −9.9689006875961739467815387625, −9.416901991685316131799270422252, −8.54465815971383080251873810571, −8.27261935048522546730138077488, −7.43491965909261215797544407998, −6.779359017384404952804366864800, −5.78768298704236585318607257795, −5.44911231121141381693336841416, −4.75416970558414825743164574339, −3.64097781951990732224579131001, −2.66999726317379474367011197941, −1.78894316876882828637109387635, −0.68078891902516788010778506358,
0.35450622858311222324304442815, 1.88079967378865843749369941870, 2.54954844765630795277914299892, 3.41765229634510222508458899433, 3.92473512345674622788298156039, 4.64641762266273178906448008937, 5.312727684618154679309762366834, 6.49928568534312662467251296798, 7.07933416791360316856940555768, 8.27816014638185472625560193387, 8.87628124089558869173155681986, 9.80493476750774243401113208511, 10.29174690954199086495888000918, 10.79522246925986506088638091698, 11.2480402828063740920725290662, 12.14034798908660740276310396272, 13.00092100388359993301889957978, 13.859595086931489053742119673712, 14.31591372154290079439633931625, 14.89143523331757683375020840697, 15.51833959692414692833837394620, 16.668801279330599971139423147652, 17.21108290245865173851025450999, 17.73831817897853572551730576783, 18.745894573956606964255207258226