L(s) = 1 | + (0.998 − 0.0570i)2-s + (0.978 + 0.207i)3-s + (0.993 − 0.113i)4-s + (0.999 − 0.0380i)5-s + (0.988 + 0.151i)6-s + (−0.123 + 0.992i)7-s + (0.985 − 0.170i)8-s + (0.913 + 0.406i)9-s + (0.995 − 0.0950i)10-s + (0.995 + 0.0950i)12-s + (0.00951 + 0.999i)13-s + (−0.0665 + 0.997i)14-s + (0.985 + 0.170i)15-s + (0.974 − 0.226i)16-s + (−0.761 + 0.647i)17-s + (0.935 + 0.353i)18-s + ⋯ |
L(s) = 1 | + (0.998 − 0.0570i)2-s + (0.978 + 0.207i)3-s + (0.993 − 0.113i)4-s + (0.999 − 0.0380i)5-s + (0.988 + 0.151i)6-s + (−0.123 + 0.992i)7-s + (0.985 − 0.170i)8-s + (0.913 + 0.406i)9-s + (0.995 − 0.0950i)10-s + (0.995 + 0.0950i)12-s + (0.00951 + 0.999i)13-s + (−0.0665 + 0.997i)14-s + (0.985 + 0.170i)15-s + (0.974 − 0.226i)16-s + (−0.761 + 0.647i)17-s + (0.935 + 0.353i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.596 + 0.802i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.596 + 0.802i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(5.686497384 + 2.857324517i\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.686497384 + 2.857324517i\) |
\(L(1)\) |
\(\approx\) |
\(3.112451444 + 0.7042887045i\) |
\(L(1)\) |
\(\approx\) |
\(3.112451444 + 0.7042887045i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.998 - 0.0570i)T \) |
| 3 | \( 1 + (0.978 + 0.207i)T \) |
| 5 | \( 1 + (0.999 - 0.0380i)T \) |
| 7 | \( 1 + (-0.123 + 0.992i)T \) |
| 13 | \( 1 + (0.00951 + 0.999i)T \) |
| 17 | \( 1 + (-0.761 + 0.647i)T \) |
| 19 | \( 1 + (-0.879 - 0.475i)T \) |
| 23 | \( 1 + (0.654 - 0.755i)T \) |
| 29 | \( 1 + (-0.564 + 0.825i)T \) |
| 37 | \( 1 + (-0.953 + 0.299i)T \) |
| 41 | \( 1 + (-0.964 + 0.263i)T \) |
| 43 | \( 1 + (-0.786 - 0.618i)T \) |
| 47 | \( 1 + (0.774 + 0.633i)T \) |
| 53 | \( 1 + (0.290 + 0.956i)T \) |
| 59 | \( 1 + (0.964 + 0.263i)T \) |
| 61 | \( 1 + (-0.998 - 0.0570i)T \) |
| 67 | \( 1 + (0.0475 - 0.998i)T \) |
| 71 | \( 1 + (0.380 - 0.924i)T \) |
| 73 | \( 1 + (0.483 - 0.875i)T \) |
| 79 | \( 1 + (-0.969 + 0.244i)T \) |
| 83 | \( 1 + (0.820 - 0.572i)T \) |
| 89 | \( 1 + (0.959 - 0.281i)T \) |
| 97 | \( 1 + (-0.466 - 0.884i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.68090312419826466443608967292, −17.60727039268418880322354634288, −17.203938276552088780104640171853, −16.3180894455937357649055331251, −15.49285513222079437597390729783, −14.90849631921980372236449747160, −14.27892300306757204681138115654, −13.540350318652700985730639323580, −13.25331338268996611436699840079, −12.79678649854203792793166809133, −11.74734492810066713905693456706, −10.74857703748650266858184105716, −10.24497531781848810848690860706, −9.57714680240201642359875960268, −8.57517880502124251466203232835, −7.82556392572026095211535834904, −6.96640705724848894990437843441, −6.6521191551715482482324461439, −5.59612832206298151661544986215, −4.90693996968572432777427626727, −3.94280243220029187775896790486, −3.39659639753743764521206734277, −2.52248121028847720477160069907, −1.911022686816287176087028759985, −1.00170789906628740483342537906,
1.70982696951000440135878453420, 1.947818697705832021644431869847, 2.73881911048831565376428696193, 3.436159313307773655616517672487, 4.499571965588461965111370914022, 4.92042847464885924833420270964, 5.91102643153180919309159813827, 6.61947245853107633436161247820, 7.10173797871989005460730612852, 8.47593902188769206502612490700, 8.85618541318602280984111305904, 9.56404490159522696062920800740, 10.52623086462511914939674398891, 10.96831982279356975631596714400, 12.15962213573494969647184773174, 12.65918383325653026085154663850, 13.40245597307372486577807712105, 13.79246318270801034977761497320, 14.68210891646663898483098845467, 15.03529877187855834008294783407, 15.64921489952544606255637250570, 16.57774466198058634728416332038, 17.07337610334753543809679500029, 18.26617909182841969990645155992, 18.87673872169613303574338478018