L(s) = 1 | + (0.980 + 0.198i)3-s + (−0.661 + 0.749i)5-s + (0.921 + 0.388i)9-s + (−0.955 − 0.294i)11-s + (0.998 − 0.0498i)13-s + (−0.797 + 0.603i)15-s + (0.270 − 0.962i)17-s + (−0.698 + 0.715i)23-s + (−0.124 − 0.992i)25-s + (0.826 + 0.563i)27-s + (−0.995 − 0.0995i)29-s + 31-s + (−0.878 − 0.478i)33-s + (−0.826 + 0.563i)37-s + (0.988 + 0.149i)39-s + ⋯ |
L(s) = 1 | + (0.980 + 0.198i)3-s + (−0.661 + 0.749i)5-s + (0.921 + 0.388i)9-s + (−0.955 − 0.294i)11-s + (0.998 − 0.0498i)13-s + (−0.797 + 0.603i)15-s + (0.270 − 0.962i)17-s + (−0.698 + 0.715i)23-s + (−0.124 − 0.992i)25-s + (0.826 + 0.563i)27-s + (−0.995 − 0.0995i)29-s + 31-s + (−0.878 − 0.478i)33-s + (−0.826 + 0.563i)37-s + (0.988 + 0.149i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.564 + 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.564 + 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.920879188 + 1.013008552i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.920879188 + 1.013008552i\) |
\(L(1)\) |
\(\approx\) |
\(1.316767806 + 0.2872485991i\) |
\(L(1)\) |
\(\approx\) |
\(1.316767806 + 0.2872485991i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.980 + 0.198i)T \) |
| 5 | \( 1 + (-0.661 + 0.749i)T \) |
| 11 | \( 1 + (-0.955 - 0.294i)T \) |
| 13 | \( 1 + (0.998 - 0.0498i)T \) |
| 17 | \( 1 + (0.270 - 0.962i)T \) |
| 23 | \( 1 + (-0.698 + 0.715i)T \) |
| 29 | \( 1 + (-0.995 - 0.0995i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.826 + 0.563i)T \) |
| 41 | \( 1 + (0.661 - 0.749i)T \) |
| 43 | \( 1 + (0.0249 + 0.999i)T \) |
| 47 | \( 1 + (0.998 - 0.0498i)T \) |
| 53 | \( 1 + (-0.270 - 0.962i)T \) |
| 59 | \( 1 + (0.878 + 0.478i)T \) |
| 61 | \( 1 + (0.995 + 0.0995i)T \) |
| 67 | \( 1 + (0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.411 + 0.911i)T \) |
| 73 | \( 1 + (0.456 + 0.889i)T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 + (0.733 + 0.680i)T \) |
| 89 | \( 1 + (0.797 - 0.603i)T \) |
| 97 | \( 1 + (0.939 + 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.724569757067016563873369203851, −17.99634484403711558538601956812, −17.12691611890533151368739518046, −16.25153470199125568104107123286, −15.668603103667674967701915041506, −15.255194616278473640766389655701, −14.38496610786634189020064874215, −13.65128492375453993510519222912, −12.9331019201513442961489230178, −12.56584539384740855080202795832, −11.772235248422025812512784620281, −10.72615030460904233540856974780, −10.19098939823091203573123512150, −9.16746691857149430900194558097, −8.64707290015213991717367772924, −7.960581759655744220665734462939, −7.60106214411865847229855354484, −6.55093944326448370284246329302, −5.68428909469474217536231764804, −4.735865771402949970546117231328, −3.94770945891231342357633424190, −3.48482370070387766101826466937, −2.38640168644344826044446553216, −1.659969283142339378967118715271, −0.66718757147271121637563355104,
0.89719565436823059550605443834, 2.15127612803899106648102098198, 2.81079436510741821106494708806, 3.53154497680068555741096016752, 4.05648907508834360899812139702, 5.08774990003858347425183788404, 5.947671714636976776071988158200, 6.98782567337237163252635515105, 7.53707586369112766787567844183, 8.20110722370883774858521665826, 8.74141611647057757473924625733, 9.803237827895469570249884110551, 10.24377879830634206015242690357, 11.131938145849006806386642474542, 11.628966174157719645839736144706, 12.67786728780275148866804849587, 13.44216162817526854095410288002, 13.93669301635208876753789424640, 14.593169662741246097864254824517, 15.42958253662648157376062719958, 15.875338617577655537083206502772, 16.22866337763986377379419934809, 17.5878646840527171558288486131, 18.2658877146203047648509498948, 18.91691921195534172217387022449