L(s) = 1 | + (−0.900 − 0.433i)3-s + (−0.900 − 0.433i)5-s + (0.623 + 0.781i)9-s + (−0.623 + 0.781i)11-s + (−0.623 + 0.781i)13-s + (0.623 + 0.781i)15-s + (−0.222 + 0.974i)17-s + (0.222 + 0.974i)23-s + (0.623 + 0.781i)25-s + (−0.222 − 0.974i)27-s + (0.222 − 0.974i)29-s + 31-s + (0.900 − 0.433i)33-s + (0.222 − 0.974i)37-s + (0.900 − 0.433i)39-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)3-s + (−0.900 − 0.433i)5-s + (0.623 + 0.781i)9-s + (−0.623 + 0.781i)11-s + (−0.623 + 0.781i)13-s + (0.623 + 0.781i)15-s + (−0.222 + 0.974i)17-s + (0.222 + 0.974i)23-s + (0.623 + 0.781i)25-s + (−0.222 − 0.974i)27-s + (0.222 − 0.974i)29-s + 31-s + (0.900 − 0.433i)33-s + (0.222 − 0.974i)37-s + (0.900 − 0.433i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.572 + 0.820i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.572 + 0.820i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2207852108 + 0.4232039139i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2207852108 + 0.4232039139i\) |
\(L(1)\) |
\(\approx\) |
\(0.6054212624 + 0.03396219659i\) |
\(L(1)\) |
\(\approx\) |
\(0.6054212624 + 0.03396219659i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.900 - 0.433i)T \) |
| 5 | \( 1 + (-0.900 - 0.433i)T \) |
| 11 | \( 1 + (-0.623 + 0.781i)T \) |
| 13 | \( 1 + (-0.623 + 0.781i)T \) |
| 17 | \( 1 + (-0.222 + 0.974i)T \) |
| 23 | \( 1 + (0.222 + 0.974i)T \) |
| 29 | \( 1 + (0.222 - 0.974i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.222 - 0.974i)T \) |
| 41 | \( 1 + (0.900 + 0.433i)T \) |
| 43 | \( 1 + (0.900 - 0.433i)T \) |
| 47 | \( 1 + (-0.623 + 0.781i)T \) |
| 53 | \( 1 + (0.222 + 0.974i)T \) |
| 59 | \( 1 + (-0.900 + 0.433i)T \) |
| 61 | \( 1 + (-0.222 + 0.974i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.222 - 0.974i)T \) |
| 73 | \( 1 + (0.623 + 0.781i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.623 - 0.781i)T \) |
| 89 | \( 1 + (-0.623 - 0.781i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.34064840684966617377075138734, −17.78702290384334653909692471353, −16.91378339098471971929039529338, −16.2036404069389811137100803032, −15.80389771526581288744284300315, −15.128597594554595530475138393442, −14.45900296063897878303604659203, −13.5502797685336922964724032833, −12.54397292666314628065621844092, −12.208709964797145441282872820417, −11.219718529415009648311170634705, −10.94474977469769086302458877908, −10.20758556810138028344102682763, −9.4855099532607850615567413334, −8.41900845139677221430076780909, −7.84410471438746657695760991946, −6.905912688260728580363936415067, −6.43899214677386265188241946023, −5.33242794072439894630775784162, −4.9017394118127830042019810077, −4.07070883668543425746925358705, −3.12139599269464001165473338728, −2.62156819825335523311508126716, −0.9153049818618977124754135400, −0.231504777912273547377087533973,
0.97547168057768310591344503749, 1.869035928637628376393359908400, 2.74716590426761895181879570216, 4.22523042036935968707697069134, 4.35729601918378196329001094570, 5.30930797777658886289508094790, 6.0641632131346695812936646379, 6.93674957107317913534228248539, 7.617097286123619147083579336513, 8.007627504742951095304877933507, 9.13102915045435981983355236716, 9.858297230909980890078322144604, 10.74370305206275552150363139660, 11.30890782259891555124058920878, 12.08430234504247065658751624008, 12.47146952272945266710230732326, 13.12672844411389441860813381101, 13.928090834983309877988028412923, 14.98982172540971513086003735801, 15.55210919289968286189745316116, 16.127218354670329120670570420401, 16.95706657336603667460452801961, 17.40263545773381172315204871789, 18.06298843423469916208738039102, 19.02771114870954116787204404122