| L(s) = 1 | + (−0.698 − 0.715i)3-s + (−0.969 + 0.246i)5-s + (−0.0249 + 0.999i)9-s + (−0.365 − 0.930i)11-s + (0.980 − 0.198i)13-s + (0.853 + 0.521i)15-s + (0.456 + 0.889i)17-s + (0.998 − 0.0498i)23-s + (0.878 − 0.478i)25-s + (0.733 − 0.680i)27-s + (0.921 + 0.388i)29-s − 31-s + (−0.411 + 0.911i)33-s + (−0.733 − 0.680i)37-s + (−0.826 − 0.563i)39-s + ⋯ |
| L(s) = 1 | + (−0.698 − 0.715i)3-s + (−0.969 + 0.246i)5-s + (−0.0249 + 0.999i)9-s + (−0.365 − 0.930i)11-s + (0.980 − 0.198i)13-s + (0.853 + 0.521i)15-s + (0.456 + 0.889i)17-s + (0.998 − 0.0498i)23-s + (0.878 − 0.478i)25-s + (0.733 − 0.680i)27-s + (0.921 + 0.388i)29-s − 31-s + (−0.411 + 0.911i)33-s + (−0.733 − 0.680i)37-s + (−0.826 − 0.563i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0738 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0738 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7493217768 - 0.8068439916i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7493217768 - 0.8068439916i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7147701752 - 0.1750716936i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7147701752 - 0.1750716936i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 3 | \( 1 + (-0.698 - 0.715i)T \) |
| 5 | \( 1 + (-0.969 + 0.246i)T \) |
| 11 | \( 1 + (-0.365 - 0.930i)T \) |
| 13 | \( 1 + (0.980 - 0.198i)T \) |
| 17 | \( 1 + (0.456 + 0.889i)T \) |
| 23 | \( 1 + (0.998 - 0.0498i)T \) |
| 29 | \( 1 + (0.921 + 0.388i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (-0.733 - 0.680i)T \) |
| 41 | \( 1 + (-0.969 + 0.246i)T \) |
| 43 | \( 1 + (-0.995 + 0.0995i)T \) |
| 47 | \( 1 + (-0.980 + 0.198i)T \) |
| 53 | \( 1 + (0.456 - 0.889i)T \) |
| 59 | \( 1 + (0.411 - 0.911i)T \) |
| 61 | \( 1 + (0.921 + 0.388i)T \) |
| 67 | \( 1 + (0.939 - 0.342i)T \) |
| 71 | \( 1 + (0.124 - 0.992i)T \) |
| 73 | \( 1 + (-0.318 - 0.947i)T \) |
| 79 | \( 1 + (-0.173 - 0.984i)T \) |
| 83 | \( 1 + (0.988 - 0.149i)T \) |
| 89 | \( 1 + (-0.853 - 0.521i)T \) |
| 97 | \( 1 + (0.173 + 0.984i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.48062819657381832335782765879, −18.023323054911292789251445582357, −17.06265849109065108999255541554, −16.54423058352846013193613756532, −15.84774552667403629920950136426, −15.388242949739182520484871872433, −14.83294378433683809003355368021, −13.85476515055016448357066765575, −12.913090207094967606833562282393, −12.29824513921686479833177622053, −11.55534378674100223832220967845, −11.199608274719808918540850473266, −10.26723249930929339821942606648, −9.72555515586015087199387825051, −8.78176759564312933602975486719, −8.262289676377270471301530619377, −7.04313186627729424697000040899, −6.85042162923255585999711943216, −5.53607567149586851711694961529, −5.02595962005861900406128123484, −4.33173199065366465794260925259, −3.59949448188059387460988074411, −2.89067203841383431960613539515, −1.46079577424715249995827851079, −0.61567942549651119755189915588,
0.33361159192288927189724924881, 1.04224589136429052973025296623, 1.9763743391514858798383885301, 3.27697192987231916382496057481, 3.56517230115621698162570080230, 4.85046950281378282516128094770, 5.429589916288566734463575760665, 6.37193428072281681427671596203, 6.80858831365570702612582940021, 7.77274818685490601435550022170, 8.28458791060064929130294395191, 8.8486397722075511099191342335, 10.34702821072169687049195322649, 10.73426788126893789151909918893, 11.3972492061961200516177344355, 11.92477764240404708019520173250, 12.87622296775702452130489407225, 13.15974454210080104422028457993, 14.13396706508407060275270049076, 14.853596775985125876706435327018, 15.72094716537670219282037242272, 16.30942349562009293043942717233, 16.771712301473413777075102754088, 17.7581415521026802820214583947, 18.32250785370886995623526856495