| L(s)  = 1  |   + (0.939 − 0.342i)2-s   + (−0.939 − 0.342i)3-s   + (0.766 − 0.642i)4-s   + (−0.173 − 0.984i)5-s   − 6-s   + (0.173 + 0.984i)7-s   + (0.5 − 0.866i)8-s   + (0.766 + 0.642i)9-s   + (−0.5 − 0.866i)10-s   + (−0.5 + 0.866i)11-s   + (−0.939 + 0.342i)12-s   + (−0.766 + 0.642i)13-s   + (0.5 + 0.866i)14-s   + (−0.173 + 0.984i)15-s   + (0.173 − 0.984i)16-s   + (−0.766 − 0.642i)17-s  + ⋯ | 
 
| L(s)  = 1  |   + (0.939 − 0.342i)2-s   + (−0.939 − 0.342i)3-s   + (0.766 − 0.642i)4-s   + (−0.173 − 0.984i)5-s   − 6-s   + (0.173 + 0.984i)7-s   + (0.5 − 0.866i)8-s   + (0.766 + 0.642i)9-s   + (−0.5 − 0.866i)10-s   + (−0.5 + 0.866i)11-s   + (−0.939 + 0.342i)12-s   + (−0.766 + 0.642i)13-s   + (0.5 + 0.866i)14-s   + (−0.173 + 0.984i)15-s   + (0.173 − 0.984i)16-s   + (−0.766 − 0.642i)17-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.568 - 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.568 - 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(0.8787372549 - 0.4609045959i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.8787372549 - 0.4609045959i\)  | 
    
    
        
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(1.123598560 - 0.4089115837i\)  | 
          
    
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(1.123598560 - 0.4089115837i\)  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 37 |  \( 1 \)  | 
| good | 2 |  \( 1 + (0.939 - 0.342i)T \)  | 
 | 3 |  \( 1 + (-0.939 - 0.342i)T \)  | 
 | 5 |  \( 1 + (-0.173 - 0.984i)T \)  | 
 | 7 |  \( 1 + (0.173 + 0.984i)T \)  | 
 | 11 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 13 |  \( 1 + (-0.766 + 0.642i)T \)  | 
 | 17 |  \( 1 + (-0.766 - 0.642i)T \)  | 
 | 19 |  \( 1 + (0.939 + 0.342i)T \)  | 
 | 23 |  \( 1 + (0.5 + 0.866i)T \)  | 
 | 29 |  \( 1 + (0.5 - 0.866i)T \)  | 
 | 31 |  \( 1 - T \)  | 
 | 41 |  \( 1 + (0.766 - 0.642i)T \)  | 
 | 43 |  \( 1 - T \)  | 
 | 47 |  \( 1 + (-0.5 - 0.866i)T \)  | 
 | 53 |  \( 1 + (0.173 - 0.984i)T \)  | 
 | 59 |  \( 1 + (-0.173 + 0.984i)T \)  | 
 | 61 |  \( 1 + (-0.766 + 0.642i)T \)  | 
 | 67 |  \( 1 + (0.173 + 0.984i)T \)  | 
 | 71 |  \( 1 + (-0.939 - 0.342i)T \)  | 
 | 73 |  \( 1 + T \)  | 
 | 79 |  \( 1 + (-0.173 - 0.984i)T \)  | 
 | 83 |  \( 1 + (0.766 + 0.642i)T \)  | 
 | 89 |  \( 1 + (-0.173 + 0.984i)T \)  | 
 | 97 |  \( 1 + (0.5 + 0.866i)T \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−35.03640964536295017950215913062, −34.48632407436252154728660299180, −33.3428788792064425021617968129, −32.58786169063507319100818184731, −30.95705419702737356231933349234, −29.82167505940103525155116089043, −29.07012487597618402823945668348, −26.98124076013339523776655747498, −26.34920792999732410862567890408, −24.36206537637199701703469389449, −23.40743942802893249467568705314, −22.409853239583000512791445170574, −21.58055241285770017388429251539, −20.00733320929104349784169392858, −18.00784423375032171794680210689, −16.78083004521403710349852557628, −15.579904108370806517940057977361, −14.34087446506882071022690815016, −12.877992775421300087163502437316, −11.228561564707156485106023410437, −10.53716313896090848901234463595, −7.53876337199953804478046197912, −6.383182436488355326640329945177, −4.85286808562406388641169668955, −3.291691085377348818839383657, 
1.96857853701371214787576443373, 4.68474676720624471414784284610, 5.501891530333362684809077623007, 7.277734240068670771393366488251, 9.638216025683352254015712285, 11.57373458813657268850334328110, 12.23047145217656675123557078187, 13.35399475243116855563969228195, 15.30165804662761050999996213147, 16.3557325439038188784050319832, 17.97359029256949552537345940906, 19.48281641865946430642242282296, 20.916164729151314949238860838387, 22.01318600425391518407037624594, 23.17401530952307696889276063649, 24.29879934126055003253141698307, 24.99386624508049543001698290375, 27.55906517346149933677361928642, 28.679421662204383218571231541953, 29.11222522549157177830835037960, 30.92262042465504229963397300848, 31.573185365058292407100605050915, 33.106563757499984006956352327443, 34.00578011127509228956629443688, 35.25935615800503360856869541956