L(s) = 1 | + (0.755 + 0.654i)3-s + (−0.989 − 0.142i)5-s + (−0.415 − 0.909i)7-s + (0.142 + 0.989i)9-s + (−0.281 − 0.959i)11-s + (−0.909 − 0.415i)13-s + (−0.654 − 0.755i)15-s + (0.841 − 0.540i)17-s + (0.540 − 0.841i)19-s + (0.281 − 0.959i)21-s + (0.959 + 0.281i)25-s + (−0.540 + 0.841i)27-s + (−0.540 − 0.841i)29-s + (−0.654 − 0.755i)31-s + (0.415 − 0.909i)33-s + ⋯ |
L(s) = 1 | + (0.755 + 0.654i)3-s + (−0.989 − 0.142i)5-s + (−0.415 − 0.909i)7-s + (0.142 + 0.989i)9-s + (−0.281 − 0.959i)11-s + (−0.909 − 0.415i)13-s + (−0.654 − 0.755i)15-s + (0.841 − 0.540i)17-s + (0.540 − 0.841i)19-s + (0.281 − 0.959i)21-s + (0.959 + 0.281i)25-s + (−0.540 + 0.841i)27-s + (−0.540 − 0.841i)29-s + (−0.654 − 0.755i)31-s + (0.415 − 0.909i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.350 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.350 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8476545222 - 0.5878611405i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8476545222 - 0.5878611405i\) |
\(L(1)\) |
\(\approx\) |
\(0.9872340158 - 0.1206238560i\) |
\(L(1)\) |
\(\approx\) |
\(0.9872340158 - 0.1206238560i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (0.755 + 0.654i)T \) |
| 5 | \( 1 + (-0.989 - 0.142i)T \) |
| 7 | \( 1 + (-0.415 - 0.909i)T \) |
| 11 | \( 1 + (-0.281 - 0.959i)T \) |
| 13 | \( 1 + (-0.909 - 0.415i)T \) |
| 17 | \( 1 + (0.841 - 0.540i)T \) |
| 19 | \( 1 + (0.540 - 0.841i)T \) |
| 29 | \( 1 + (-0.540 - 0.841i)T \) |
| 31 | \( 1 + (-0.654 - 0.755i)T \) |
| 37 | \( 1 + (0.989 - 0.142i)T \) |
| 41 | \( 1 + (0.142 - 0.989i)T \) |
| 43 | \( 1 + (-0.755 - 0.654i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (-0.909 + 0.415i)T \) |
| 59 | \( 1 + (0.909 + 0.415i)T \) |
| 61 | \( 1 + (-0.755 + 0.654i)T \) |
| 67 | \( 1 + (-0.281 + 0.959i)T \) |
| 71 | \( 1 + (0.959 + 0.281i)T \) |
| 73 | \( 1 + (-0.841 - 0.540i)T \) |
| 79 | \( 1 + (0.415 - 0.909i)T \) |
| 83 | \( 1 + (-0.989 + 0.142i)T \) |
| 89 | \( 1 + (0.654 - 0.755i)T \) |
| 97 | \( 1 + (-0.142 + 0.989i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.96047567128007332721312950543, −23.918465550305030448858569436723, −23.27990592092580174357527532105, −22.29215204959364013082029955143, −21.24307926339758991619750614818, −20.1198847913922941989533147282, −19.6085548719411018899618001993, −18.64428317767147595265373690473, −18.2310255055871436546056046647, −16.7662729477132355598492800806, −15.73999026931583738188380186252, −14.80406046756509167569415631376, −14.44528139853040757601010247827, −12.74067485951869793751443164244, −12.45060905769088820394713590336, −11.579890378140405685237567418670, −10.00661548717425414238471634827, −9.19229579847661667843214828746, −8.04933326441417765034669616133, −7.447971796409461367928933978178, −6.44608639934224849286140332429, −5.046757384057362576186996967640, −3.68899695882348759136880467154, −2.80728202590022417378529889455, −1.63795463878005773989317538801,
0.57379597030063120607046067266, 2.72554315454893032066396790140, 3.52373836904916885916461006039, 4.41547298748812825015736229184, 5.51235582779145508175778046177, 7.36639544434730819668453448986, 7.70057904734944363411212529783, 8.911581052634731318690736972, 9.845700917776492017775375554057, 10.76651702527072030070031186799, 11.67335981598311103737642125289, 12.98428079470737413450440572628, 13.78225829145737637797457795096, 14.73403854429066211559156197456, 15.62644674794972006093358943175, 16.36369885966882406181816828411, 17.04871867089527672502385280232, 18.70373653732781335813011894988, 19.37289388958837542492864439564, 20.15457915788190952669438211934, 20.70387471958750559325949899462, 21.93764411097844520912757417239, 22.62572933264353836917482549883, 23.70781097352507313261370267137, 24.41519869961324818432294349211