| L(s) = 1 | + (0.540 − 0.841i)3-s + (0.909 + 0.415i)5-s + (0.959 + 0.281i)7-s + (−0.415 − 0.909i)9-s + (−0.755 − 0.654i)11-s + (0.281 + 0.959i)13-s + (0.841 − 0.540i)15-s + (−0.142 − 0.989i)17-s + (0.989 + 0.142i)19-s + (0.755 − 0.654i)21-s + (0.654 + 0.755i)25-s + (−0.989 − 0.142i)27-s + (−0.989 + 0.142i)29-s + (0.841 − 0.540i)31-s + (−0.959 + 0.281i)33-s + ⋯ |
| L(s) = 1 | + (0.540 − 0.841i)3-s + (0.909 + 0.415i)5-s + (0.959 + 0.281i)7-s + (−0.415 − 0.909i)9-s + (−0.755 − 0.654i)11-s + (0.281 + 0.959i)13-s + (0.841 − 0.540i)15-s + (−0.142 − 0.989i)17-s + (0.989 + 0.142i)19-s + (0.755 − 0.654i)21-s + (0.654 + 0.755i)25-s + (−0.989 − 0.142i)27-s + (−0.989 + 0.142i)29-s + (0.841 − 0.540i)31-s + (−0.959 + 0.281i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.794 - 0.607i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.794 - 0.607i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.823198672 - 0.6176124333i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.823198672 - 0.6176124333i\) |
| \(L(1)\) |
\(\approx\) |
\(1.476732414 - 0.3210990831i\) |
| \(L(1)\) |
\(\approx\) |
\(1.476732414 - 0.3210990831i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
| good | 3 | \( 1 + (0.540 - 0.841i)T \) |
| 5 | \( 1 + (0.909 + 0.415i)T \) |
| 7 | \( 1 + (0.959 + 0.281i)T \) |
| 11 | \( 1 + (-0.755 - 0.654i)T \) |
| 13 | \( 1 + (0.281 + 0.959i)T \) |
| 17 | \( 1 + (-0.142 - 0.989i)T \) |
| 19 | \( 1 + (0.989 + 0.142i)T \) |
| 29 | \( 1 + (-0.989 + 0.142i)T \) |
| 31 | \( 1 + (0.841 - 0.540i)T \) |
| 37 | \( 1 + (-0.909 + 0.415i)T \) |
| 41 | \( 1 + (-0.415 + 0.909i)T \) |
| 43 | \( 1 + (-0.540 + 0.841i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.281 - 0.959i)T \) |
| 59 | \( 1 + (-0.281 - 0.959i)T \) |
| 61 | \( 1 + (-0.540 - 0.841i)T \) |
| 67 | \( 1 + (-0.755 + 0.654i)T \) |
| 71 | \( 1 + (0.654 + 0.755i)T \) |
| 73 | \( 1 + (0.142 - 0.989i)T \) |
| 79 | \( 1 + (-0.959 + 0.281i)T \) |
| 83 | \( 1 + (0.909 - 0.415i)T \) |
| 89 | \( 1 + (-0.841 - 0.540i)T \) |
| 97 | \( 1 + (0.415 - 0.909i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.84231992938605068648233083778, −24.06991590386397149578449376707, −22.84206219732324086016137292147, −21.93325917033093366475488981594, −21.02879662552742740058414675107, −20.59149771809245226471064158875, −19.88388338347726690424058515174, −18.40312138279119598101723114387, −17.54403521906673496108765011575, −16.90125351949482376101246062473, −15.62796871975448646836912314660, −15.05203871271963815638391331877, −13.941555603386238999053568899445, −13.36533959770827093032626564847, −12.17479198749245921198350464769, −10.58890262771962329664005847325, −10.39097879108024202036175715488, −9.16369345254860479645233187210, −8.32154858823081891575570152677, −7.42079162557472312079774588527, −5.611582364991153952629117506914, −5.08763934984489044191301506834, −3.96687272125667259283363042716, −2.62329650957538443965593071554, −1.554625811983267957523108040169,
1.35452331141883108450744434345, 2.29224047158206023492407634365, 3.242012668879472357454408928672, 4.98605673638018873949492081442, 5.957130189907070116209885407667, 6.98938333435568718586323955012, 7.92867741032317433814361811112, 8.89345159632798796666131082622, 9.774011504835622027064414399825, 11.179791838883050915606079281473, 11.800544317526891088056607218479, 13.194447233536391614519388689430, 13.84348152012986341354900049801, 14.38328790223233385542800712530, 15.486308164166907548037651740, 16.76118274153314884863789613053, 17.82468652090658798025744773368, 18.45757286248025294892960982991, 18.90273659955042561606524561391, 20.410343117899036736977650698484, 20.93634214484964857638558060370, 21.78853088895333118191716618022, 22.91059950416339267796152970680, 24.02459871446900049807364466631, 24.52790801782543672528608738677