| L(s) = 1 | + (−0.953 + 0.300i)5-s + (−0.965 + 0.258i)7-s + (0.991 − 0.130i)11-s + (0.216 + 0.976i)13-s + (0.342 − 0.939i)17-s + (0.996 − 0.0871i)23-s + (0.819 − 0.573i)25-s + (0.675 + 0.737i)29-s + (0.5 − 0.866i)31-s + (0.843 − 0.537i)35-s + (0.923 + 0.382i)37-s + (0.819 + 0.573i)41-s + (0.300 + 0.953i)43-s + (0.342 + 0.939i)47-s + (0.866 − 0.5i)49-s + ⋯ |
| L(s) = 1 | + (−0.953 + 0.300i)5-s + (−0.965 + 0.258i)7-s + (0.991 − 0.130i)11-s + (0.216 + 0.976i)13-s + (0.342 − 0.939i)17-s + (0.996 − 0.0871i)23-s + (0.819 − 0.573i)25-s + (0.675 + 0.737i)29-s + (0.5 − 0.866i)31-s + (0.843 − 0.537i)35-s + (0.923 + 0.382i)37-s + (0.819 + 0.573i)41-s + (0.300 + 0.953i)43-s + (0.342 + 0.939i)47-s + (0.866 − 0.5i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.969 + 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.969 + 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.930845740 + 0.2421698954i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.930845740 + 0.2421698954i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9622904525 + 0.09680083523i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9622904525 + 0.09680083523i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (-0.953 + 0.300i)T \) |
| 7 | \( 1 + (-0.965 + 0.258i)T \) |
| 11 | \( 1 + (0.991 - 0.130i)T \) |
| 13 | \( 1 + (0.216 + 0.976i)T \) |
| 17 | \( 1 + (0.342 - 0.939i)T \) |
| 23 | \( 1 + (0.996 - 0.0871i)T \) |
| 29 | \( 1 + (0.675 + 0.737i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.923 + 0.382i)T \) |
| 41 | \( 1 + (0.819 + 0.573i)T \) |
| 43 | \( 1 + (0.300 + 0.953i)T \) |
| 47 | \( 1 + (0.342 + 0.939i)T \) |
| 53 | \( 1 + (-0.887 + 0.461i)T \) |
| 59 | \( 1 + (0.737 + 0.675i)T \) |
| 61 | \( 1 + (-0.300 + 0.953i)T \) |
| 67 | \( 1 + (-0.675 - 0.737i)T \) |
| 71 | \( 1 + (0.996 + 0.0871i)T \) |
| 73 | \( 1 + (-0.819 - 0.573i)T \) |
| 79 | \( 1 + (-0.984 + 0.173i)T \) |
| 83 | \( 1 + (0.130 - 0.991i)T \) |
| 89 | \( 1 + (0.819 - 0.573i)T \) |
| 97 | \( 1 + (-0.939 - 0.342i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.783233208640115749970388160512, −17.49157897081088894671040502172, −17.187926741796935619155346103327, −16.31660993651017830911834224180, −15.76053325884011173960425933111, −15.14354568404887356955842461118, −14.46549193838000411442616133652, −13.54284463873596595393053586146, −12.71685559171395043131358316081, −12.43055547021903763266497626030, −11.58721590383056787446952551482, −10.78782278773238684238649688120, −10.15045607884084135276114817342, −9.295625199164274896449924305660, −8.61085372912439625721952275065, −7.92088973823813680672477970888, −7.1117849791603902674374399871, −6.46865619573950820226624285909, −5.66818912240370188784652651790, −4.71084879775661110458474114934, −3.79710201786187012844372935107, −3.49118456663816188263313992061, −2.50404813015327514891135774707, −1.096057079892310702954505215225, −0.62739626426036564989825471423,
0.54794502567384288084078306588, 1.33550435311718772570498521474, 2.847341656772955616552311769442, 3.053540672383007984071847773227, 4.21738117900658928478930172045, 4.55118794400667328175309497743, 5.8997553758436576402727187612, 6.5257840204672362804098761626, 7.10846522301684831790231237785, 7.84556815350811133504985389594, 8.91719785096189649330400825478, 9.25404151255608351776717346074, 10.06742956784010565827365444639, 11.13492146207134035000663808632, 11.54355046141636546440727663681, 12.21183832845555656434269335079, 12.893305023455006542089665338923, 13.78372820572788098847196038145, 14.47046187346556488075065924875, 15.07244171306061959797307295818, 15.94345805564708692129698957782, 16.37102483537522044709975756227, 16.90443214830939061905839839366, 17.99728198610637247192359446494, 18.73073759124147437691327713367