| L(s) = 1 | + (−0.564 − 0.825i)2-s + (−0.362 + 0.931i)4-s + (0.921 − 0.389i)5-s + (0.870 + 0.491i)7-s + (0.974 − 0.226i)8-s + (−0.841 − 0.540i)10-s + (−0.774 − 0.633i)13-s + (−0.0855 − 0.996i)14-s + (−0.736 − 0.676i)16-s + (0.897 + 0.441i)17-s + (0.466 − 0.884i)19-s + (0.0285 + 0.999i)20-s + (−0.415 + 0.909i)23-s + (0.696 − 0.717i)25-s + (−0.0855 + 0.996i)26-s + ⋯ |
| L(s) = 1 | + (−0.564 − 0.825i)2-s + (−0.362 + 0.931i)4-s + (0.921 − 0.389i)5-s + (0.870 + 0.491i)7-s + (0.974 − 0.226i)8-s + (−0.841 − 0.540i)10-s + (−0.774 − 0.633i)13-s + (−0.0855 − 0.996i)14-s + (−0.736 − 0.676i)16-s + (0.897 + 0.441i)17-s + (0.466 − 0.884i)19-s + (0.0285 + 0.999i)20-s + (−0.415 + 0.909i)23-s + (0.696 − 0.717i)25-s + (−0.0855 + 0.996i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.628 - 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.628 - 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.104768916 - 0.5272411850i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.104768916 - 0.5272411850i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9558202032 - 0.3397526293i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9558202032 - 0.3397526293i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.564 - 0.825i)T \) |
| 5 | \( 1 + (0.921 - 0.389i)T \) |
| 7 | \( 1 + (0.870 + 0.491i)T \) |
| 13 | \( 1 + (-0.774 - 0.633i)T \) |
| 17 | \( 1 + (0.897 + 0.441i)T \) |
| 19 | \( 1 + (0.466 - 0.884i)T \) |
| 23 | \( 1 + (-0.415 + 0.909i)T \) |
| 29 | \( 1 + (0.696 + 0.717i)T \) |
| 31 | \( 1 + (-0.254 + 0.967i)T \) |
| 37 | \( 1 + (-0.998 + 0.0570i)T \) |
| 41 | \( 1 + (0.941 + 0.336i)T \) |
| 43 | \( 1 + (0.654 - 0.755i)T \) |
| 47 | \( 1 + (-0.610 - 0.791i)T \) |
| 53 | \( 1 + (0.736 - 0.676i)T \) |
| 59 | \( 1 + (-0.941 + 0.336i)T \) |
| 61 | \( 1 + (0.564 - 0.825i)T \) |
| 67 | \( 1 + (-0.959 + 0.281i)T \) |
| 71 | \( 1 + (0.985 + 0.170i)T \) |
| 73 | \( 1 + (-0.198 - 0.980i)T \) |
| 79 | \( 1 + (-0.516 + 0.856i)T \) |
| 83 | \( 1 + (0.993 - 0.113i)T \) |
| 89 | \( 1 + (0.142 - 0.989i)T \) |
| 97 | \( 1 + (-0.921 - 0.389i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.60557319272578690349501980630, −24.44334688930991097575316744276, −23.144856514797953812826581544818, −22.44868494701918659392200937806, −21.23419305364713291432705387384, −20.500442909422513375650489078664, −19.215210680682693114784852954521, −18.43627089080118497108610973753, −17.64725610684323036706995346710, −16.9395321591930992485252839490, −16.18441452716525541717141020359, −14.73461843980554192339278561600, −14.311233939016977364606299610760, −13.63364442702061765372641201574, −12.10348670163407173595637002824, −10.8419509416752936767313575873, −10.02871968253565036534181318145, −9.31215352639946182454266561339, −8.01664717777938400642919292565, −7.30344791374630657098721055028, −6.22423282988369404913495430701, −5.31461132138607290601460879627, −4.28540193739788193552537405201, −2.36157035544508078724107504558, −1.22828099080581882674580842100,
1.18996857470512150847855790632, 2.14762607903536274045821118721, 3.2319250403131194374145033225, 4.826063243454166948687517101, 5.50749864347585642039310898373, 7.19988695431702624709887175091, 8.24041213364232246798567114979, 9.07389332710040962067431594577, 9.973014201462906804951515962501, 10.78076816828697306808065717741, 11.96704757479847131652589058401, 12.57066938815208171086893479394, 13.66676352416077197862632209531, 14.51005838452012633446303761700, 15.84572346011483201859328453840, 17.00419714634218027634228144686, 17.71049301458323467979780483043, 18.15970139837416605877007014629, 19.43084357523763982772021524221, 20.165279792557906121932752969052, 21.2142843248216501937548651886, 21.573324871899791367054477463557, 22.43656438861871791670877030620, 23.81306871455220909904518314618, 24.80419616108076446354120956226