| L(s) = 1 | + (−0.998 − 0.0570i)2-s + (0.993 + 0.113i)4-s + (0.466 + 0.884i)5-s + (0.921 + 0.389i)7-s + (−0.985 − 0.170i)8-s + (−0.415 − 0.909i)10-s + (0.870 − 0.491i)13-s + (−0.897 − 0.441i)14-s + (0.974 + 0.226i)16-s + (0.941 − 0.336i)17-s + (0.0285 − 0.999i)19-s + (0.362 + 0.931i)20-s + (0.654 + 0.755i)23-s + (−0.564 + 0.825i)25-s + (−0.897 + 0.441i)26-s + ⋯ |
| L(s) = 1 | + (−0.998 − 0.0570i)2-s + (0.993 + 0.113i)4-s + (0.466 + 0.884i)5-s + (0.921 + 0.389i)7-s + (−0.985 − 0.170i)8-s + (−0.415 − 0.909i)10-s + (0.870 − 0.491i)13-s + (−0.897 − 0.441i)14-s + (0.974 + 0.226i)16-s + (0.941 − 0.336i)17-s + (0.0285 − 0.999i)19-s + (0.362 + 0.931i)20-s + (0.654 + 0.755i)23-s + (−0.564 + 0.825i)25-s + (−0.897 + 0.441i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.889 + 0.457i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.889 + 0.457i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.046814727 + 0.2534749115i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.046814727 + 0.2534749115i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8899517107 + 0.1195639771i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8899517107 + 0.1195639771i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.998 - 0.0570i)T \) |
| 5 | \( 1 + (0.466 + 0.884i)T \) |
| 7 | \( 1 + (0.921 + 0.389i)T \) |
| 13 | \( 1 + (0.870 - 0.491i)T \) |
| 17 | \( 1 + (0.941 - 0.336i)T \) |
| 19 | \( 1 + (0.0285 - 0.999i)T \) |
| 23 | \( 1 + (0.654 + 0.755i)T \) |
| 29 | \( 1 + (-0.564 - 0.825i)T \) |
| 31 | \( 1 + (0.198 - 0.980i)T \) |
| 37 | \( 1 + (-0.736 + 0.676i)T \) |
| 41 | \( 1 + (-0.254 - 0.967i)T \) |
| 43 | \( 1 + (0.142 + 0.989i)T \) |
| 47 | \( 1 + (-0.774 + 0.633i)T \) |
| 53 | \( 1 + (-0.974 + 0.226i)T \) |
| 59 | \( 1 + (0.254 - 0.967i)T \) |
| 61 | \( 1 + (0.998 - 0.0570i)T \) |
| 67 | \( 1 + (0.841 - 0.540i)T \) |
| 71 | \( 1 + (-0.610 + 0.791i)T \) |
| 73 | \( 1 + (-0.516 + 0.856i)T \) |
| 79 | \( 1 + (-0.696 + 0.717i)T \) |
| 83 | \( 1 + (0.0855 - 0.996i)T \) |
| 89 | \( 1 + (0.959 + 0.281i)T \) |
| 97 | \( 1 + (-0.466 + 0.884i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.849632485875522621958920019407, −23.94350520740442811638701171068, −23.275319741931922079144679439682, −21.52729861522742395870071717041, −20.83388894493212937395887967301, −20.44350327510550135472669145778, −19.22883778534132075142334264822, −18.33142912502026778402942883715, −17.55538510460848266661937005171, −16.636100480222602634402247662080, −16.24121973560228776158450286681, −14.82037405204525977388308344612, −14.036555278695540223854881339977, −12.71374183191425023473166869356, −11.82009355488353174757248345487, −10.76753961511028773823343417762, −9.998104017839168159380485922, −8.77715727013792742178258667046, −8.332048509052769480603992393575, −7.199371580702637328150036953106, −5.993297084961581579726246599680, −5.018558776802310831841553121472, −3.573125814861678234483820739934, −1.81326866843440911549352559946, −1.18170107342350996755811969026,
1.27330193890554719441661246906, 2.4181098607966170531362534675, 3.40999567623030047200832453611, 5.31199773591125821560199866658, 6.23768529576992122435553806364, 7.35701293791916256849919124121, 8.13810873002064111125499194884, 9.24401845003836589789046811852, 10.09893870697112189855376948974, 11.208491067089813849673923565215, 11.4986002176448872985530127961, 13.03064926999733300350013456525, 14.20536870435088248190369465907, 15.14791334528177638804790558414, 15.78559819147150700243780788507, 17.266247988714793084898290246671, 17.62729522496942881301402045076, 18.65815210325997067975989552438, 19.05107262669978449469802917529, 20.50242894854740550444808692717, 21.04502144632528534493121122525, 21.92107712046452568127913830437, 23.05721812167904904695297358604, 24.145529089157463949739781357653, 25.03698326536453198871535663578