| L(s) = 1 | + (−0.870 − 0.491i)2-s + (0.516 + 0.856i)4-s + (−0.941 − 0.336i)5-s + (−0.897 − 0.441i)7-s + (−0.0285 − 0.999i)8-s + (0.654 + 0.755i)10-s + (−0.0855 + 0.996i)13-s + (0.564 + 0.825i)14-s + (−0.466 + 0.884i)16-s + (−0.998 − 0.0570i)17-s + (0.254 − 0.967i)19-s + (−0.198 − 0.980i)20-s + (0.142 + 0.989i)23-s + (0.774 + 0.633i)25-s + (0.564 − 0.825i)26-s + ⋯ |
| L(s) = 1 | + (−0.870 − 0.491i)2-s + (0.516 + 0.856i)4-s + (−0.941 − 0.336i)5-s + (−0.897 − 0.441i)7-s + (−0.0285 − 0.999i)8-s + (0.654 + 0.755i)10-s + (−0.0855 + 0.996i)13-s + (0.564 + 0.825i)14-s + (−0.466 + 0.884i)16-s + (−0.998 − 0.0570i)17-s + (0.254 − 0.967i)19-s + (−0.198 − 0.980i)20-s + (0.142 + 0.989i)23-s + (0.774 + 0.633i)25-s + (0.564 − 0.825i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4415786652 + 0.1142339855i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4415786652 + 0.1142339855i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5201189873 - 0.06946753400i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5201189873 - 0.06946753400i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.870 - 0.491i)T \) |
| 5 | \( 1 + (-0.941 - 0.336i)T \) |
| 7 | \( 1 + (-0.897 - 0.441i)T \) |
| 13 | \( 1 + (-0.0855 + 0.996i)T \) |
| 17 | \( 1 + (-0.998 - 0.0570i)T \) |
| 19 | \( 1 + (0.254 - 0.967i)T \) |
| 23 | \( 1 + (0.142 + 0.989i)T \) |
| 29 | \( 1 + (0.774 - 0.633i)T \) |
| 31 | \( 1 + (0.974 + 0.226i)T \) |
| 37 | \( 1 + (-0.921 + 0.389i)T \) |
| 41 | \( 1 + (-0.736 + 0.676i)T \) |
| 43 | \( 1 + (0.959 + 0.281i)T \) |
| 47 | \( 1 + (-0.993 - 0.113i)T \) |
| 53 | \( 1 + (0.466 + 0.884i)T \) |
| 59 | \( 1 + (0.736 + 0.676i)T \) |
| 61 | \( 1 + (0.870 - 0.491i)T \) |
| 67 | \( 1 + (0.415 + 0.909i)T \) |
| 71 | \( 1 + (0.362 + 0.931i)T \) |
| 73 | \( 1 + (0.985 + 0.170i)T \) |
| 79 | \( 1 + (-0.610 + 0.791i)T \) |
| 83 | \( 1 + (0.696 - 0.717i)T \) |
| 89 | \( 1 + (-0.841 + 0.540i)T \) |
| 97 | \( 1 + (0.941 - 0.336i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.75967533389296386574071326814, −23.96947664234312439463313377133, −22.703881395711467656419643398656, −22.56520194752041944564096935678, −20.80592874161585318472498753658, −19.88195815555340515901947059942, −19.27137111438448088485281313083, −18.48632121670111617191301150254, −17.655278600338159955677489005026, −16.46892011495939172761895067520, −15.757403453990792755312887288945, −15.19892795447762080352468719090, −14.17888849102717339237000659845, −12.724735014712335613212326643186, −11.85740432933095726360601455651, −10.69147093674323452170617483758, −10.04854319954401335098687527260, −8.77193502548345974259404356011, −8.12441029944396395550698328897, −6.98961169982996581393843717228, −6.278282659367791533524157189359, −5.035064510168372032283515370438, −3.48718706748536911283267659994, −2.379056673260876815675004414153, −0.46783086456534618296978450132,
0.9929081923985439259783134898, 2.599511979114639157013972797004, 3.68823667619404315372482630409, 4.604878908610535021997883309843, 6.61886607136212269356069306999, 7.17539695001792841633011234224, 8.370386415267240628404926843572, 9.18484430646020485333557207196, 10.05963011350934938859298336286, 11.27131652818685089911002705635, 11.79696090606520019860207593034, 12.88977864077107594657693583798, 13.70581916073717244060526633131, 15.51264367304075404019832446005, 15.89188272253947201230357359846, 16.87932698037390144495730366655, 17.650855344170909938310252615317, 18.92388440629146299756318816172, 19.51891928214248828086258251359, 20.008011365046168841321918205241, 21.08071563278330864314273228549, 22.02714988299144210305712825469, 22.99752087033643633974863606450, 23.9806533987389993530608886955, 24.84281918204419578867090087563