| L(s) = 1 | + (0.866 + 0.5i)7-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s − i·17-s − 19-s + (−0.866 + 0.5i)23-s + (0.5 − 0.866i)29-s + (0.5 + 0.866i)31-s − i·37-s + (0.5 + 0.866i)41-s + (0.866 + 0.5i)43-s + (−0.866 − 0.5i)47-s + (0.5 + 0.866i)49-s − i·53-s + (−0.5 − 0.866i)59-s + ⋯ |
| L(s) = 1 | + (0.866 + 0.5i)7-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s − i·17-s − 19-s + (−0.866 + 0.5i)23-s + (0.5 − 0.866i)29-s + (0.5 + 0.866i)31-s − i·37-s + (0.5 + 0.866i)41-s + (0.866 + 0.5i)43-s + (−0.866 − 0.5i)47-s + (0.5 + 0.866i)49-s − i·53-s + (−0.5 − 0.866i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.665 - 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.665 - 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.005461243 - 0.8988199966i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.005461243 - 0.8988199966i\) |
| \(L(1)\) |
\(\approx\) |
\(1.249541978 - 0.1575153233i\) |
| \(L(1)\) |
\(\approx\) |
\(1.249541978 - 0.1575153233i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.866 - 0.5i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.866 - 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.4578234017046411082136616646, −23.78083854548770805458591873171, −23.016571452111305148962112138, −21.94972578381086731918104047231, −21.02825917640192482613690827535, −20.343934211156128606081093476988, −19.392295334733882907237648186081, −18.37172295321961036351132688325, −17.44475929580150430098265157708, −16.83776870557967442649199510938, −15.61963121105902803299870160368, −14.68250351991261440290456422824, −13.9938630973916510214353600467, −12.865959724765815828426470308352, −11.92046197510650722509715602704, −10.90976741131701526204222863761, −10.15299335280143921468211687046, −8.83357471888603442941782349891, −8.06492842309581432345043922449, −6.90366199973229537159047454277, −5.981543450450811918354270730, −4.48821991590570158175957880672, −3.964668293964421319997766592363, −2.1690434548058438950941733597, −1.203034827003406919096495032,
0.69745550630985281868392863674, 2.01562822344604228618905689915, 3.30607903360754876633163887604, 4.50293143177496622566867653910, 5.6372820403408240023299719331, 6.49199233869125896444722542341, 7.96973732826119052114185814854, 8.54965916329224390352741283903, 9.64668807333800867149473528328, 10.96583869014573561805953518170, 11.50943281736548409422291537933, 12.58713968334018350729852794735, 13.763150647026865085353082165119, 14.40581558472898974127462405881, 15.546265282100801519694832522359, 16.24583252337177411801441653524, 17.48149881383859544003494911480, 18.11400625140175550273436121554, 19.06807897847087480916270591724, 19.98357516918791463615465547555, 21.13423734410602071068191794173, 21.513465115660011089301533950834, 22.72106641844403464529975539380, 23.50059383631894375145150741110, 24.586603911374240269995534833335