| L(s) = 1 | + (−0.722 + 0.691i)2-s + (−0.919 + 0.393i)3-s + (0.0448 − 0.998i)4-s + (0.393 − 0.919i)6-s + (0.657 + 0.753i)8-s + (0.691 − 0.722i)9-s + (−0.691 − 0.722i)11-s + (0.351 + 0.936i)12-s + (0.990 − 0.134i)13-s + (−0.995 − 0.0896i)16-s + (0.998 − 0.0448i)17-s + i·18-s + (−0.809 − 0.587i)19-s + (0.998 + 0.0448i)22-s + (−0.351 + 0.936i)23-s + (−0.900 − 0.433i)24-s + ⋯ |
| L(s) = 1 | + (−0.722 + 0.691i)2-s + (−0.919 + 0.393i)3-s + (0.0448 − 0.998i)4-s + (0.393 − 0.919i)6-s + (0.657 + 0.753i)8-s + (0.691 − 0.722i)9-s + (−0.691 − 0.722i)11-s + (0.351 + 0.936i)12-s + (0.990 − 0.134i)13-s + (−0.995 − 0.0896i)16-s + (0.998 − 0.0448i)17-s + i·18-s + (−0.809 − 0.587i)19-s + (0.998 + 0.0448i)22-s + (−0.351 + 0.936i)23-s + (−0.900 − 0.433i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6663720150 + 0.02265236827i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6663720150 + 0.02265236827i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5715512861 + 0.1325804656i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5715512861 + 0.1325804656i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.722 + 0.691i)T \) |
| 3 | \( 1 + (-0.919 + 0.393i)T \) |
| 11 | \( 1 + (-0.691 - 0.722i)T \) |
| 13 | \( 1 + (0.990 - 0.134i)T \) |
| 17 | \( 1 + (0.998 - 0.0448i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.351 + 0.936i)T \) |
| 29 | \( 1 + (0.963 + 0.266i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.351 - 0.936i)T \) |
| 41 | \( 1 + (-0.858 - 0.512i)T \) |
| 43 | \( 1 + (0.974 - 0.222i)T \) |
| 47 | \( 1 + (0.880 + 0.473i)T \) |
| 53 | \( 1 + (-0.998 - 0.0448i)T \) |
| 59 | \( 1 + (-0.995 - 0.0896i)T \) |
| 61 | \( 1 + (0.550 - 0.834i)T \) |
| 67 | \( 1 + (-0.587 + 0.809i)T \) |
| 71 | \( 1 + (-0.0448 + 0.998i)T \) |
| 73 | \( 1 + (-0.990 - 0.134i)T \) |
| 79 | \( 1 + (0.809 - 0.587i)T \) |
| 83 | \( 1 + (0.880 - 0.473i)T \) |
| 89 | \( 1 + (0.134 - 0.990i)T \) |
| 97 | \( 1 + (-0.587 - 0.809i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.92374211421870186270350643944, −20.58215935342118274619994608555, −19.309306596558273661975371009959, −18.735579683798007799146840681362, −18.208378346212701261114673759393, −17.44495521295328269023771827206, −16.73557586318939930524496086594, −16.10342744726615712172263252646, −15.23266060832301241090691718168, −13.82068521879464007304752721759, −13.1085795267384113861551770449, −12.209624835719881742326232830955, −11.955741445606263079172790676985, −10.66429154566377648150574735536, −10.47292697408654387330075598621, −9.5609162836642904849782594927, −8.247434559293569197413496115608, −7.88428534167531224565169463751, −6.74186619680088815373864837953, −6.0696920759594928781027907051, −4.81526273641671490664896262459, −4.04166207546222521890728655394, −2.76888587869485632653049544754, −1.796199982584299402585026885007, −0.89810742901053314097623388431,
0.535927360682577666220990031909, 1.52001075277969248634240122574, 3.09808495910829877737025106258, 4.29390281489316073921950831274, 5.31670807105150012395486354021, 5.85626794587446807119943373628, 6.61029955195703467371689028562, 7.57698261085745314947766735933, 8.46458991754587064702647209035, 9.22738551923186715021614049544, 10.28766902541896697642921910580, 10.68191515550450415440498182817, 11.45294674205424587018091370475, 12.45455189568530243095018797005, 13.53385971864898655324731845232, 14.28168755837343402334242787060, 15.46973692666512372510121930199, 15.839900382618028247900402715275, 16.42029270372932584459213885325, 17.45873740211748505555172532394, 17.720947322731012138483078950618, 18.80304034839778534590121778435, 19.13964796628788400153942943214, 20.420930259530179109752564367279, 21.16786035775116621913354271821