| L(s) = 1 | + (−0.642 − 0.766i)2-s + (−0.173 + 0.984i)4-s + (−0.984 − 0.173i)5-s + (−0.342 + 0.939i)7-s + (0.866 − 0.5i)8-s + (0.5 + 0.866i)10-s + (0.342 − 0.939i)11-s + (0.939 − 0.342i)14-s + (−0.939 − 0.342i)16-s + 17-s + (−0.866 − 0.5i)19-s + (0.342 − 0.939i)20-s + (−0.939 + 0.342i)22-s + (−0.939 + 0.342i)23-s + (0.939 + 0.342i)25-s + ⋯ |
| L(s) = 1 | + (−0.642 − 0.766i)2-s + (−0.173 + 0.984i)4-s + (−0.984 − 0.173i)5-s + (−0.342 + 0.939i)7-s + (0.866 − 0.5i)8-s + (0.5 + 0.866i)10-s + (0.342 − 0.939i)11-s + (0.939 − 0.342i)14-s + (−0.939 − 0.342i)16-s + 17-s + (−0.866 − 0.5i)19-s + (0.342 − 0.939i)20-s + (−0.939 + 0.342i)22-s + (−0.939 + 0.342i)23-s + (0.939 + 0.342i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.482 + 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.482 + 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.07626937737 + 0.1291678124i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.07626937737 + 0.1291678124i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4860219101 - 0.09000838108i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4860219101 - 0.09000838108i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.642 - 0.766i)T \) |
| 5 | \( 1 + (-0.984 - 0.173i)T \) |
| 7 | \( 1 + (-0.342 + 0.939i)T \) |
| 11 | \( 1 + (0.342 - 0.939i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (-0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.766 + 0.642i)T \) |
| 31 | \( 1 + (-0.642 + 0.766i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.984 - 0.173i)T \) |
| 43 | \( 1 + (-0.766 + 0.642i)T \) |
| 47 | \( 1 + (0.642 + 0.766i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.342 - 0.939i)T \) |
| 61 | \( 1 + (-0.939 - 0.342i)T \) |
| 67 | \( 1 + (0.984 + 0.173i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 + (-0.342 + 0.939i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.642 + 0.766i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.53404500585955464017857768977, −23.545273011241142037032907763590, −23.13797702078624012877683189565, −22.329137879314316990154850273347, −20.546864270294550836493964630148, −19.99114836800226371593833761771, −19.07882007911882365495030604593, −18.39660136335330503173150795379, −17.080971672144717116134630945862, −16.67774615991809283288361187943, −15.609127852225226038225630538459, −14.829154420670857623360976420735, −14.050464203133011013993668528699, −12.749836902947445483866014129820, −11.65556671755694309252607632324, −10.4565764704423584373974102026, −9.889650466597526175481528988090, −8.588073140477568131101443238846, −7.598776810298950286886594266655, −7.084808613490772366531839838467, −5.95816591251360649739357110800, −4.50952660184709631949312217673, −3.71157929903477318089591123879, −1.749839521277811985902583928840, −0.11718217425971336337228823484,
1.55951634122138867407647871514, 3.06127789779607851380988700873, 3.70709855186205659846707952868, 5.12040814374530550522696675121, 6.55827182118130982559576375892, 7.8360677402611208647804142843, 8.59114033558275840489205681002, 9.33713450705258778842502536098, 10.59730702560417664750268218915, 11.499797863745837445199931301932, 12.194522949360715777292307025004, 12.936535617415036716097950126900, 14.27469853231308585766601982705, 15.53193110852412407523164398611, 16.28064284252570565423769112129, 17.088331574186434620433234049363, 18.41459751651146458563577788895, 18.97152013799726693838834247344, 19.62709304356700802815179398427, 20.531802645822040806655222379838, 21.65107785042009193617399789075, 22.11577422895826737147277939132, 23.29567370076176959910715994041, 24.24394091787526600257899913778, 25.35213424806657337071312796699