| L(s) = 1 | + (−0.984 + 0.173i)2-s + (0.939 − 0.342i)4-s + (−0.342 − 0.939i)5-s + (0.642 + 0.766i)7-s + (−0.866 + 0.5i)8-s + (0.5 + 0.866i)10-s + (−0.642 − 0.766i)11-s + (−0.766 − 0.642i)14-s + (0.766 − 0.642i)16-s + 17-s + (0.866 + 0.5i)19-s + (−0.642 − 0.766i)20-s + (0.766 + 0.642i)22-s + (0.766 + 0.642i)23-s + (−0.766 + 0.642i)25-s + ⋯ |
| L(s) = 1 | + (−0.984 + 0.173i)2-s + (0.939 − 0.342i)4-s + (−0.342 − 0.939i)5-s + (0.642 + 0.766i)7-s + (−0.866 + 0.5i)8-s + (0.5 + 0.866i)10-s + (−0.642 − 0.766i)11-s + (−0.766 − 0.642i)14-s + (0.766 − 0.642i)16-s + 17-s + (0.866 + 0.5i)19-s + (−0.642 − 0.766i)20-s + (0.766 + 0.642i)22-s + (0.766 + 0.642i)23-s + (−0.766 + 0.642i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.821 - 0.570i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.821 - 0.570i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7767839103 - 0.2435111821i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7767839103 - 0.2435111821i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7290489462 - 0.07803628349i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7290489462 - 0.07803628349i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.984 + 0.173i)T \) |
| 5 | \( 1 + (-0.342 - 0.939i)T \) |
| 7 | \( 1 + (0.642 + 0.766i)T \) |
| 11 | \( 1 + (-0.642 - 0.766i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.766 + 0.642i)T \) |
| 29 | \( 1 + (-0.173 - 0.984i)T \) |
| 31 | \( 1 + (-0.984 - 0.173i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.342 - 0.939i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.984 - 0.173i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.642 - 0.766i)T \) |
| 61 | \( 1 + (0.766 - 0.642i)T \) |
| 67 | \( 1 + (0.342 + 0.939i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.642 + 0.766i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.984 - 0.173i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.26256729770427871623849682731, −23.96556247950414531898087610336, −23.326514980726817804959160446301, −22.19432253344257571048882912232, −21.11136724443721711821674439586, −20.32631162159748982801021584921, −19.60465841137912982190143549767, −18.3573357535053526786598179237, −18.154045982960719123369375673999, −17.01036344568614725281653022826, −16.14591340770859600787432330125, −15.040336870774951882036212963138, −14.41994052716885545021414492318, −12.984518749729335550563247979603, −11.83100135160104313397894450057, −10.95749688449080863067497443390, −10.353840013444703202483136267967, −9.40165180835017340856366234476, −7.9489052051898159495449029822, −7.463756405878638230191558095250, −6.61838903833290012193793875834, −5.03388745635366755956900670002, −3.544325941131012800140854785658, −2.562889049426688428166507471198, −1.17068787617770532876621317251,
0.84420711533204388917887332981, 2.06852920565354515766585676352, 3.47851691225645944093654950161, 5.31829631152069374349347984282, 5.68813322236855743423534409953, 7.47586887025688667242556782396, 8.09580502540079512340698657663, 8.93370121294486617348234523633, 9.77998947693749810704926229538, 11.09129662213973761297264536538, 11.778609778793557721583531823671, 12.69621888761076882088024690007, 14.07503161197535360955498857341, 15.22442038249494978710202526035, 15.93517618445428110668328190349, 16.72589074985459094804847332378, 17.58025342113790622389324818695, 18.683101152159554821049365999553, 19.0914074414679995797099913457, 20.43698925809840008118689448687, 20.86761826081727357364023636831, 21.794853079900888953883778326029, 23.456855001561741644645083407930, 24.001397694920329518318271968417, 24.927263013862672015859208713671