| L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.173 + 0.984i)4-s + (0.984 + 0.173i)5-s + (0.342 − 0.939i)7-s + (−0.866 + 0.5i)8-s + (0.5 + 0.866i)10-s + (−0.342 + 0.939i)11-s + (0.939 − 0.342i)14-s + (−0.939 − 0.342i)16-s + 17-s + (0.866 + 0.5i)19-s + (−0.342 + 0.939i)20-s + (−0.939 + 0.342i)22-s + (−0.939 + 0.342i)23-s + (0.939 + 0.342i)25-s + ⋯ |
| L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.173 + 0.984i)4-s + (0.984 + 0.173i)5-s + (0.342 − 0.939i)7-s + (−0.866 + 0.5i)8-s + (0.5 + 0.866i)10-s + (−0.342 + 0.939i)11-s + (0.939 − 0.342i)14-s + (−0.939 − 0.342i)16-s + 17-s + (0.866 + 0.5i)19-s + (−0.342 + 0.939i)20-s + (−0.939 + 0.342i)22-s + (−0.939 + 0.342i)23-s + (0.939 + 0.342i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0838 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0838 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.535198944 + 1.411415943i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.535198944 + 1.411415943i\) |
| \(L(1)\) |
\(\approx\) |
\(1.449344764 + 0.8031456791i\) |
| \(L(1)\) |
\(\approx\) |
\(1.449344764 + 0.8031456791i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (0.642 + 0.766i)T \) |
| 5 | \( 1 + (0.984 + 0.173i)T \) |
| 7 | \( 1 + (0.342 - 0.939i)T \) |
| 11 | \( 1 + (-0.342 + 0.939i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.766 + 0.642i)T \) |
| 31 | \( 1 + (0.642 - 0.766i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.984 + 0.173i)T \) |
| 43 | \( 1 + (-0.766 + 0.642i)T \) |
| 47 | \( 1 + (-0.642 - 0.766i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.342 + 0.939i)T \) |
| 61 | \( 1 + (-0.939 - 0.342i)T \) |
| 67 | \( 1 + (-0.984 - 0.173i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 + (0.342 - 0.939i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (-0.642 - 0.766i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.46422377782196594440232956800, −23.818826701559664803300062497247, −22.49599715495161370938292112707, −21.858629579457533464976768665092, −21.17384964528082159477227706800, −20.55448616525262428023012389166, −19.30875648267040395342951939115, −18.46446943592047574083809030579, −17.85846120017065859406800082035, −16.47113529321275447180050782592, −15.472792611885985935508255305301, −14.35226466293024483899433165754, −13.78598848154722148319151123514, −12.80716880755490494007083372104, −11.932687046833853769801562257934, −11.04290374705914861622262441727, −9.9503527074895314469904056438, −9.22714219489650607650264424211, −8.10082105473141774392546067385, −6.253783692883445545765980865291, −5.62561601058806290972385540452, −4.81763529985092199884962424840, −3.234823452918193927357829566294, −2.38455335743607000306235295433, −1.21361715370721538580971570966,
1.67423879862402424517818055795, 3.088367131954161277692022148767, 4.28225927702388383848369888182, 5.29390618550401755282550704557, 6.16469995122779028051532764375, 7.34629947202367728910167741713, 7.89187487910046337777675045681, 9.47606602598912873803758303990, 10.18788723393100404866755452367, 11.53282846358144563201364384219, 12.66782612696465551446288739065, 13.47308359936774887983112012773, 14.281468524760121931480323155272, 14.867162150902099729419107608804, 16.20819860511726938034315861054, 16.89196287671557338387692903728, 17.79163227949319308731932089587, 18.34567927570072057693684919104, 20.11695549407426942580712677847, 20.81555054213087036510107237175, 21.56683808559438742970568401999, 22.63004255182549917310475980329, 23.20044107906603808128148543072, 24.18302030333983118485788661934, 24.976153576713177637044605214770