| L(s) = 1 | + (0.963 + 0.266i)2-s + (−0.427 + 0.904i)3-s + (0.858 + 0.512i)4-s + (0.185 − 0.982i)5-s + (−0.652 + 0.757i)6-s + (0.791 − 0.611i)7-s + (0.691 + 0.722i)8-s + (−0.635 − 0.772i)9-s + (0.440 − 0.897i)10-s + (0.817 + 0.575i)11-s + (−0.830 + 0.557i)12-s + (0.762 + 0.646i)13-s + (0.925 − 0.379i)14-s + (0.809 + 0.587i)15-s + (0.473 + 0.880i)16-s + (0.663 + 0.748i)17-s + ⋯ |
| L(s) = 1 | + (0.963 + 0.266i)2-s + (−0.427 + 0.904i)3-s + (0.858 + 0.512i)4-s + (0.185 − 0.982i)5-s + (−0.652 + 0.757i)6-s + (0.791 − 0.611i)7-s + (0.691 + 0.722i)8-s + (−0.635 − 0.772i)9-s + (0.440 − 0.897i)10-s + (0.817 + 0.575i)11-s + (−0.830 + 0.557i)12-s + (0.762 + 0.646i)13-s + (0.925 − 0.379i)14-s + (0.809 + 0.587i)15-s + (0.473 + 0.880i)16-s + (0.663 + 0.748i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3503 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0669 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3503 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0669 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.426325773 + 2.594530036i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.426325773 + 2.594530036i\) |
| \(L(1)\) |
\(\approx\) |
\(1.815124397 + 0.8391191778i\) |
| \(L(1)\) |
\(\approx\) |
\(1.815124397 + 0.8391191778i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 31 | \( 1 \) |
| 113 | \( 1 \) |
| good | 2 | \( 1 + (0.963 + 0.266i)T \) |
| 3 | \( 1 + (-0.427 + 0.904i)T \) |
| 5 | \( 1 + (0.185 - 0.982i)T \) |
| 7 | \( 1 + (0.791 - 0.611i)T \) |
| 11 | \( 1 + (0.817 + 0.575i)T \) |
| 13 | \( 1 + (0.762 + 0.646i)T \) |
| 17 | \( 1 + (0.663 + 0.748i)T \) |
| 19 | \( 1 + (-0.685 + 0.727i)T \) |
| 23 | \( 1 + (-0.795 + 0.605i)T \) |
| 29 | \( 1 + (0.493 + 0.869i)T \) |
| 37 | \( 1 + (-0.0373 + 0.999i)T \) |
| 41 | \( 1 + (0.119 - 0.992i)T \) |
| 43 | \( 1 + (-0.862 - 0.506i)T \) |
| 47 | \( 1 + (-0.0672 + 0.997i)T \) |
| 53 | \( 1 + (-0.420 + 0.907i)T \) |
| 59 | \( 1 + (0.904 + 0.427i)T \) |
| 61 | \( 1 + (-0.974 + 0.222i)T \) |
| 67 | \( 1 + (0.467 + 0.884i)T \) |
| 71 | \( 1 + (-0.544 - 0.838i)T \) |
| 73 | \( 1 + (-0.998 - 0.0523i)T \) |
| 79 | \( 1 + (0.171 - 0.985i)T \) |
| 83 | \( 1 + (0.712 - 0.701i)T \) |
| 89 | \( 1 + (0.200 - 0.979i)T \) |
| 97 | \( 1 + (-0.691 + 0.722i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.50258706251415926567568323624, −18.115163332495771188583385860697, −17.333638689861374283257909394655, −16.42218058081166082554014678266, −15.66870250892535964276860963101, −14.77484775808511887694291327075, −14.367969821454597960336706054202, −13.70344282302303510594068350414, −13.135678058802087962596941836659, −12.18317545778626296517819954975, −11.65664708040506718079458147161, −11.15684232626152885794672060015, −10.61269966169614307342097898110, −9.63273875426273214949831809889, −8.37459969257132533660845136182, −7.83861457978350634132720686346, −6.81122066717585025443656035894, −6.358478329724210698194598550565, −5.74603532415258039734462942681, −5.07397966940138081809796770439, −4.02966647706400972674211779351, −3.07607062758246620148440929948, −2.436301885459221682309734431447, −1.72287433834940656442568401266, −0.75947798796736992720743619011,
1.390226869803078812020995090194, 1.71836340678709235575224073006, 3.338693520587052417100871318643, 4.15187764890289295639681345287, 4.30244216469377593204625773909, 5.159986575298434764283031822005, 5.90406408970107706549320454100, 6.464685037799237761711288914909, 7.5296514058341914827106121773, 8.397829037898887953481990462598, 8.93035864725541255555731215095, 10.05785369812107865365684009024, 10.56455357481538392381647435014, 11.49551917100825366311517730510, 12.01336635551424855666186045979, 12.536378269827707235167868321859, 13.5898013849325364235977226227, 14.15349399236591558286544707069, 14.76079007844889400159081801474, 15.4231661045403253333636769290, 16.41819644513934634216046394421, 16.52583764035367660673714311399, 17.38796014301076206985246774033, 17.66170860194715279505720649206, 19.13805275547659568152722034304