| L(s) = 1 | + (−0.895 + 0.445i)3-s + (0.526 + 0.850i)5-s + (0.798 + 0.602i)7-s + (0.602 − 0.798i)9-s + (0.361 − 0.932i)11-s + (−0.850 − 0.526i)13-s + (−0.850 − 0.526i)15-s + (−0.982 + 0.183i)19-s + (−0.982 − 0.183i)21-s + (0.798 + 0.602i)23-s + (−0.445 + 0.895i)25-s + (−0.183 + 0.982i)27-s + (0.361 − 0.932i)29-s + (0.526 − 0.850i)31-s + (0.0922 + 0.995i)33-s + ⋯ |
| L(s) = 1 | + (−0.895 + 0.445i)3-s + (0.526 + 0.850i)5-s + (0.798 + 0.602i)7-s + (0.602 − 0.798i)9-s + (0.361 − 0.932i)11-s + (−0.850 − 0.526i)13-s + (−0.850 − 0.526i)15-s + (−0.982 + 0.183i)19-s + (−0.982 − 0.183i)21-s + (0.798 + 0.602i)23-s + (−0.445 + 0.895i)25-s + (−0.183 + 0.982i)27-s + (0.361 − 0.932i)29-s + (0.526 − 0.850i)31-s + (0.0922 + 0.995i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.826 + 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.826 + 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.732063422 + 0.5337798963i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.732063422 + 0.5337798963i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9610874419 + 0.2310926056i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9610874419 + 0.2310926056i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
| good | 3 | \( 1 + (-0.895 + 0.445i)T \) |
| 5 | \( 1 + (0.526 + 0.850i)T \) |
| 7 | \( 1 + (0.798 + 0.602i)T \) |
| 11 | \( 1 + (0.361 - 0.932i)T \) |
| 13 | \( 1 + (-0.850 - 0.526i)T \) |
| 19 | \( 1 + (-0.982 + 0.183i)T \) |
| 23 | \( 1 + (0.798 + 0.602i)T \) |
| 29 | \( 1 + (0.361 - 0.932i)T \) |
| 31 | \( 1 + (0.526 - 0.850i)T \) |
| 37 | \( 1 + (-0.995 - 0.0922i)T \) |
| 41 | \( 1 + (-0.895 + 0.445i)T \) |
| 43 | \( 1 + (0.739 - 0.673i)T \) |
| 47 | \( 1 + (0.602 + 0.798i)T \) |
| 53 | \( 1 + (0.602 - 0.798i)T \) |
| 59 | \( 1 + (-0.273 + 0.961i)T \) |
| 61 | \( 1 + (0.961 - 0.273i)T \) |
| 67 | \( 1 + (0.982 - 0.183i)T \) |
| 71 | \( 1 + (-0.798 - 0.602i)T \) |
| 73 | \( 1 + (0.673 - 0.739i)T \) |
| 79 | \( 1 + (0.183 + 0.982i)T \) |
| 83 | \( 1 + (0.445 - 0.895i)T \) |
| 89 | \( 1 + (-0.850 + 0.526i)T \) |
| 97 | \( 1 + (0.798 + 0.602i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.13190917008900316140936513756, −20.25149771818828141520884781280, −19.5285430053118539313241056158, −18.56497370326122686534924545529, −17.56758410409099541797500894150, −17.23948616419117331759685193925, −16.77568717543839096458962026419, −15.76662174373716557202917131405, −14.64179861148389244649820279048, −13.95835149035463876315535126367, −12.99077119200198926538725603058, −12.364082623135160667669825254735, −11.78035091964879379106030353226, −10.67023766278300016895129989542, −10.14654737926206897575056640143, −9.03655030149656689537477821420, −8.21066743465780382305086407763, −7.02920975160022214199572390800, −6.72571810605435832115232245435, −5.34142705827839229322934712329, −4.803655733269827706052354838222, −4.210520986724715801618932337817, −2.26939985445622021077560944887, −1.56916728184634558329454248126, −0.69151166410011144602362313742,
0.6174047123595988832127805702, 1.91467533297884004855741592926, 2.90795007989563440389594085744, 3.991389016042531479187818614241, 5.06406102095239298763766697557, 5.740839910844680947942217394846, 6.41029148526828403364664039638, 7.371135216526130359383896368694, 8.45331072672882102278489291499, 9.41686572901223273780144014094, 10.24064918413611193350197641069, 10.946399539825165572250060228234, 11.561149790452246908769082766869, 12.30886668771347267526348549990, 13.3902302088706915060427273417, 14.30747938304513758774100715103, 15.12406155819234044029572391117, 15.486179857786118931368211346325, 16.83689828903813717402596358606, 17.29741054780107329004022705915, 17.88606497511294664689278035460, 18.8467252967545547831761831031, 19.29131668668482848401745053706, 20.866275639111500140525808406299, 21.23506522955105352667570155311