| L(s) = 1 | + (−0.973 + 0.228i)3-s + (−0.873 − 0.486i)5-s + (0.317 − 0.948i)7-s + (0.895 − 0.445i)9-s + (−0.565 − 0.824i)11-s + (0.273 − 0.961i)13-s + (0.961 + 0.273i)15-s + (0.995 − 0.0922i)19-s + (−0.0922 + 0.995i)21-s + (−0.317 + 0.948i)23-s + (0.526 + 0.850i)25-s + (−0.769 + 0.638i)27-s + (−0.824 + 0.565i)29-s + (0.486 + 0.873i)31-s + (0.739 + 0.673i)33-s + ⋯ |
| L(s) = 1 | + (−0.973 + 0.228i)3-s + (−0.873 − 0.486i)5-s + (0.317 − 0.948i)7-s + (0.895 − 0.445i)9-s + (−0.565 − 0.824i)11-s + (0.273 − 0.961i)13-s + (0.961 + 0.273i)15-s + (0.995 − 0.0922i)19-s + (−0.0922 + 0.995i)21-s + (−0.317 + 0.948i)23-s + (0.526 + 0.850i)25-s + (−0.769 + 0.638i)27-s + (−0.824 + 0.565i)29-s + (0.486 + 0.873i)31-s + (0.739 + 0.673i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.978 + 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.978 + 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8796721598 + 0.09116837605i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8796721598 + 0.09116837605i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6731618761 - 0.1100953564i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6731618761 - 0.1100953564i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
| good | 3 | \( 1 + (-0.973 + 0.228i)T \) |
| 5 | \( 1 + (-0.873 - 0.486i)T \) |
| 7 | \( 1 + (0.317 - 0.948i)T \) |
| 11 | \( 1 + (-0.565 - 0.824i)T \) |
| 13 | \( 1 + (0.273 - 0.961i)T \) |
| 19 | \( 1 + (0.995 - 0.0922i)T \) |
| 23 | \( 1 + (-0.317 + 0.948i)T \) |
| 29 | \( 1 + (-0.824 + 0.565i)T \) |
| 31 | \( 1 + (0.486 + 0.873i)T \) |
| 37 | \( 1 + (-0.0461 + 0.998i)T \) |
| 41 | \( 1 + (-0.228 - 0.973i)T \) |
| 43 | \( 1 + (0.361 + 0.932i)T \) |
| 47 | \( 1 + (0.445 - 0.895i)T \) |
| 53 | \( 1 + (-0.895 + 0.445i)T \) |
| 59 | \( 1 + (0.798 - 0.602i)T \) |
| 61 | \( 1 + (-0.990 + 0.138i)T \) |
| 67 | \( 1 + (-0.0922 - 0.995i)T \) |
| 71 | \( 1 + (0.948 + 0.317i)T \) |
| 73 | \( 1 + (0.914 - 0.403i)T \) |
| 79 | \( 1 + (-0.638 + 0.769i)T \) |
| 83 | \( 1 + (0.526 + 0.850i)T \) |
| 89 | \( 1 + (0.273 + 0.961i)T \) |
| 97 | \( 1 + (0.948 + 0.317i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.12438735222379337282846900580, −20.38962927872359909082104045492, −19.19546222712861579206664541799, −18.5864205758571742681136719813, −18.206975893924436642581923513486, −17.299816289520990948317624794345, −16.258575890877264729131012678334, −15.75782505247095479435913599145, −15.02155260822270847073357664483, −14.15088491523092758492115490014, −12.97160099228738108806477264907, −12.20624923706327369603926060325, −11.65314019161891189715502300523, −11.073210710502125144880548533080, −10.11417981452996358309009869660, −9.19727599835905701303504041413, −7.99525409442539554647168420915, −7.41099495189607876754988881109, −6.50482833693630718997823656036, −5.69369650517195641433604991597, −4.72292930111383681738686436327, −4.04738231711040803209838520158, −2.63160042634453916927096562363, −1.765313777724933332995563975265, −0.34500602031911827311006479522,
0.66757846305779150155499147804, 1.27907925280433273059344316181, 3.294889923428737589263615980138, 3.82453956998455985788613581647, 5.033860428307494591066623673058, 5.36579161394464619894805492916, 6.5983996153776223302899248864, 7.595111982409751410611599590636, 8.05035700139234943097500238541, 9.2635337727912671465440610300, 10.31164644227659945394801917900, 10.93804014610812196828607942098, 11.535732438415682939875827404092, 12.386408504293559331567062262095, 13.21289506730202562225750194115, 13.94237439408097574943261525741, 15.28116217893362585663850715154, 15.78928730250693913389453884992, 16.46318336324366971419488347308, 17.15667055273110118102397140580, 17.944583542084470818468651706656, 18.67424696781404644211496228827, 19.709672005576037770463844347008, 20.39735942378622225572276650591, 21.03652436494960531458512816041