L(s) = 1 | + (−0.932 − 0.361i)3-s + (−0.982 + 0.183i)5-s + (−0.739 − 0.673i)7-s + (0.739 + 0.673i)9-s + (0.602 − 0.798i)11-s + (−0.982 − 0.183i)13-s + (0.982 + 0.183i)15-s + (−0.445 + 0.895i)19-s + (0.445 + 0.895i)21-s + (−0.739 − 0.673i)23-s + (0.932 − 0.361i)25-s + (−0.445 − 0.895i)27-s + (−0.602 + 0.798i)29-s + (0.982 + 0.183i)31-s + (−0.850 + 0.526i)33-s + ⋯ |
L(s) = 1 | + (−0.932 − 0.361i)3-s + (−0.982 + 0.183i)5-s + (−0.739 − 0.673i)7-s + (0.739 + 0.673i)9-s + (0.602 − 0.798i)11-s + (−0.982 − 0.183i)13-s + (0.982 + 0.183i)15-s + (−0.445 + 0.895i)19-s + (0.445 + 0.895i)21-s + (−0.739 − 0.673i)23-s + (0.932 − 0.361i)25-s + (−0.445 − 0.895i)27-s + (−0.602 + 0.798i)29-s + (0.982 + 0.183i)31-s + (−0.850 + 0.526i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.345 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.345 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3927234082 - 0.2737526158i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3927234082 - 0.2737526158i\) |
\(L(1)\) |
\(\approx\) |
\(0.5259732220 - 0.08770165190i\) |
\(L(1)\) |
\(\approx\) |
\(0.5259732220 - 0.08770165190i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.932 - 0.361i)T \) |
| 5 | \( 1 + (-0.982 + 0.183i)T \) |
| 7 | \( 1 + (-0.739 - 0.673i)T \) |
| 11 | \( 1 + (0.602 - 0.798i)T \) |
| 13 | \( 1 + (-0.982 - 0.183i)T \) |
| 19 | \( 1 + (-0.445 + 0.895i)T \) |
| 23 | \( 1 + (-0.739 - 0.673i)T \) |
| 29 | \( 1 + (-0.602 + 0.798i)T \) |
| 31 | \( 1 + (0.982 + 0.183i)T \) |
| 37 | \( 1 + (-0.850 - 0.526i)T \) |
| 41 | \( 1 + (0.932 + 0.361i)T \) |
| 43 | \( 1 + (0.273 - 0.961i)T \) |
| 47 | \( 1 + (-0.739 + 0.673i)T \) |
| 53 | \( 1 + (0.739 + 0.673i)T \) |
| 59 | \( 1 + (-0.0922 + 0.995i)T \) |
| 61 | \( 1 + (0.0922 + 0.995i)T \) |
| 67 | \( 1 + (-0.445 + 0.895i)T \) |
| 71 | \( 1 + (-0.739 - 0.673i)T \) |
| 73 | \( 1 + (-0.273 - 0.961i)T \) |
| 79 | \( 1 + (-0.445 + 0.895i)T \) |
| 83 | \( 1 + (-0.932 + 0.361i)T \) |
| 89 | \( 1 + (-0.982 + 0.183i)T \) |
| 97 | \( 1 + (0.739 + 0.673i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.45639361283271426169967327207, −20.43647963694176571885988173252, −19.48094689082570209485543189791, −19.16669450449400498938689531471, −18.02085614976657297696144298814, −17.26800555423190959641565040822, −16.636564385032353786010897129221, −15.61105996930732691353870411262, −15.4352175966636626693221963382, −14.51799425622443076764831151888, −13.06200884353674391684669735730, −12.41645805336013726490395556903, −11.77976446200417011891910281980, −11.297997052935605358123134970444, −9.966015230761100636340088153677, −9.58222074462550215165717628167, −8.56404848662901668156064797872, −7.359517702642436676427989062376, −6.75054589963315253056515738245, −5.83414649628690358494953546468, −4.78247652669235356778616725336, −4.23772587913158707270265354074, −3.20851828010509079450643567726, −1.94136878913869726767139250405, −0.43901174652467984686900043464,
0.2714397196015737971552744930, 1.21607106097454131607055441239, 2.7150098209953825856735393874, 3.83957472720222459178828476394, 4.42560381007868605004504072298, 5.66065771863553228886611204025, 6.463307658846096694226424854971, 7.200289969600600146034616548138, 7.86100620393381457060031406943, 8.937839292255474316181940390649, 10.25017140748484439644645903166, 10.59092979382432189800677621712, 11.63710458934466354483145282545, 12.2379631237365411610208725996, 12.84097315269676009275364403463, 13.92022749244080595670231495006, 14.683526154428021199037509478727, 15.791371929485205977780998560832, 16.47178804514211780413627114279, 16.84976882219761887221841539125, 17.82353376388594953802192559967, 18.79026335762258234225791058216, 19.36173135833307920281562384857, 19.8386899188463526930209974218, 20.97467773547300838014355274122