| L(s) = 1 | + (−0.0922 − 0.995i)3-s + (0.739 − 0.673i)5-s + (0.982 − 0.183i)7-s + (−0.982 + 0.183i)9-s + (0.850 − 0.526i)11-s + (0.739 + 0.673i)13-s + (−0.739 − 0.673i)15-s + (0.273 − 0.961i)19-s + (−0.273 − 0.961i)21-s + (0.982 − 0.183i)23-s + (0.0922 − 0.995i)25-s + (0.273 + 0.961i)27-s + (−0.850 + 0.526i)29-s + (−0.739 − 0.673i)31-s + (−0.602 − 0.798i)33-s + ⋯ |
| L(s) = 1 | + (−0.0922 − 0.995i)3-s + (0.739 − 0.673i)5-s + (0.982 − 0.183i)7-s + (−0.982 + 0.183i)9-s + (0.850 − 0.526i)11-s + (0.739 + 0.673i)13-s + (−0.739 − 0.673i)15-s + (0.273 − 0.961i)19-s + (−0.273 − 0.961i)21-s + (0.982 − 0.183i)23-s + (0.0922 − 0.995i)25-s + (0.273 + 0.961i)27-s + (−0.850 + 0.526i)29-s + (−0.739 − 0.673i)31-s + (−0.602 − 0.798i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.653 - 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1156 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.653 - 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.272080462 - 2.778198735i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.272080462 - 2.778198735i\) |
| \(L(1)\) |
\(\approx\) |
\(1.222363077 - 0.7679392130i\) |
| \(L(1)\) |
\(\approx\) |
\(1.222363077 - 0.7679392130i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
| good | 3 | \( 1 + (-0.0922 - 0.995i)T \) |
| 5 | \( 1 + (0.739 - 0.673i)T \) |
| 7 | \( 1 + (0.982 - 0.183i)T \) |
| 11 | \( 1 + (0.850 - 0.526i)T \) |
| 13 | \( 1 + (0.739 + 0.673i)T \) |
| 19 | \( 1 + (0.273 - 0.961i)T \) |
| 23 | \( 1 + (0.982 - 0.183i)T \) |
| 29 | \( 1 + (-0.850 + 0.526i)T \) |
| 31 | \( 1 + (-0.739 - 0.673i)T \) |
| 37 | \( 1 + (-0.602 + 0.798i)T \) |
| 41 | \( 1 + (0.0922 + 0.995i)T \) |
| 43 | \( 1 + (-0.445 - 0.895i)T \) |
| 47 | \( 1 + (0.982 + 0.183i)T \) |
| 53 | \( 1 + (-0.982 + 0.183i)T \) |
| 59 | \( 1 + (-0.932 - 0.361i)T \) |
| 61 | \( 1 + (0.932 - 0.361i)T \) |
| 67 | \( 1 + (0.273 - 0.961i)T \) |
| 71 | \( 1 + (0.982 - 0.183i)T \) |
| 73 | \( 1 + (0.445 - 0.895i)T \) |
| 79 | \( 1 + (0.273 - 0.961i)T \) |
| 83 | \( 1 + (-0.0922 + 0.995i)T \) |
| 89 | \( 1 + (0.739 - 0.673i)T \) |
| 97 | \( 1 + (-0.982 + 0.183i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.29712440819258591097798727782, −20.77402284922033100313345710731, −20.14263144973687359476887506923, −18.954681483531169120678343375343, −18.1146342597886532785475324090, −17.425951175808341196420109487756, −16.93532601667304303326230478111, −15.812770039724769787124984469568, −15.03747656541903701355199771569, −14.47549780882116032548587589643, −13.93306398763063439193255361852, −12.73518825941062083251869259842, −11.670754650933612027652319532188, −10.96022446453207488257283831610, −10.41929026722901929462851344398, −9.467263824376854489766753260193, −8.86665796567393795750078941195, −7.82656013262824669881913004808, −6.7825064126895583701823146839, −5.68188954351005558410663041954, −5.29622830739821624053130856022, −4.060892254816522747257186686275, −3.36851554536531528089935511839, −2.19921539706805587475846026185, −1.22397186662027688417569956808,
0.64698988361238792319197950637, 1.41986957284659007642200594537, 2.04059583914987761054566239931, 3.37205083627840305484113004447, 4.643799289027059278226472419898, 5.40495370848773286091830279298, 6.31221177974015138978806908734, 7.0157459833364742478423190181, 8.05759427963266825805357035905, 8.865021395035113224967061436071, 9.3034408372022232407998765610, 10.92510564807628075500451427388, 11.31647731559281158700603489008, 12.20897620212020343040004761997, 13.11080290360556934626988400166, 13.767548229302663460719193189319, 14.22920389205171224469429282279, 15.24117695964440788716523668457, 16.676158246419760612978661891921, 16.91409733321526044064511789713, 17.727703853639363566773058964683, 18.451776522216822100976951208731, 19.12197706818461493775344940414, 20.22661046970668707378544952960, 20.58250450878171803692602697395