Properties

Label 1-345-345.344-r0-0-0
Degree $1$
Conductor $345$
Sign $1$
Analytic cond. $1.60217$
Root an. cond. $1.60217$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 11-s − 13-s + 14-s + 16-s − 17-s − 19-s + 22-s − 26-s + 28-s − 29-s + 31-s + 32-s − 34-s + 37-s − 38-s − 41-s + 43-s + 44-s + 47-s + 49-s − 52-s − 53-s + 56-s + ⋯
L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 11-s − 13-s + 14-s + 16-s − 17-s − 19-s + 22-s − 26-s + 28-s − 29-s + 31-s + 32-s − 34-s + 37-s − 38-s − 41-s + 43-s + 44-s + 47-s + 49-s − 52-s − 53-s + 56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(345\)    =    \(3 \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(1.60217\)
Root analytic conductor: \(1.60217\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{345} (344, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 345,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.647033043\)
\(L(\frac12)\) \(\approx\) \(2.647033043\)
\(L(1)\) \(\approx\) \(2.048451238\)
\(L(1)\) \(\approx\) \(2.048451238\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
23 \( 1 \)
good2 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 - T \)
19 \( 1 - T \)
29 \( 1 - T \)
31 \( 1 + T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 + T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 - T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 - T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.573860747972975949961128563660, −24.12229638792361441694949823914, −23.09868186267186723530025195265, −22.09237793518191652404389529983, −21.62197442483613512533109720360, −20.52905166388584956981516921061, −19.85959126149502736739013212363, −18.87690913221773090408387551491, −17.34974336446995004777324059840, −16.97408224416657874398166297865, −15.55781795967104477990847971306, −14.79794429642898695709941567962, −14.18639499809584748974370804323, −13.134293323070897607567231809312, −12.1186801057505446029987504624, −11.39570364563965566568597312445, −10.52347298078689620329078000580, −9.1347889008394234458891472860, −7.906220746044566267388142377329, −6.923150291588460431060781545341, −5.94237793105117534598120693087, −4.69029767487662773866993936497, −4.14886097920110186077870232560, −2.59591001066290431223861663725, −1.61409372396333121851805846463, 1.61409372396333121851805846463, 2.59591001066290431223861663725, 4.14886097920110186077870232560, 4.69029767487662773866993936497, 5.94237793105117534598120693087, 6.923150291588460431060781545341, 7.906220746044566267388142377329, 9.1347889008394234458891472860, 10.52347298078689620329078000580, 11.39570364563965566568597312445, 12.1186801057505446029987504624, 13.134293323070897607567231809312, 14.18639499809584748974370804323, 14.79794429642898695709941567962, 15.55781795967104477990847971306, 16.97408224416657874398166297865, 17.34974336446995004777324059840, 18.87690913221773090408387551491, 19.85959126149502736739013212363, 20.52905166388584956981516921061, 21.62197442483613512533109720360, 22.09237793518191652404389529983, 23.09868186267186723530025195265, 24.12229638792361441694949823914, 24.573860747972975949961128563660

Graph of the $Z$-function along the critical line