L(s) = 1 | + (−0.809 + 0.587i)2-s + (−0.978 − 0.207i)3-s + (0.309 − 0.951i)4-s + (−0.104 + 0.994i)5-s + (0.913 − 0.406i)6-s + (0.669 + 0.743i)7-s + (0.309 + 0.951i)8-s + (0.913 + 0.406i)9-s + (−0.5 − 0.866i)10-s + (−0.5 + 0.866i)12-s + (0.913 + 0.406i)13-s + (−0.978 − 0.207i)14-s + (0.309 − 0.951i)15-s + (−0.809 − 0.587i)16-s + (0.913 − 0.406i)17-s + (−0.978 + 0.207i)18-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)2-s + (−0.978 − 0.207i)3-s + (0.309 − 0.951i)4-s + (−0.104 + 0.994i)5-s + (0.913 − 0.406i)6-s + (0.669 + 0.743i)7-s + (0.309 + 0.951i)8-s + (0.913 + 0.406i)9-s + (−0.5 − 0.866i)10-s + (−0.5 + 0.866i)12-s + (0.913 + 0.406i)13-s + (−0.978 − 0.207i)14-s + (0.309 − 0.951i)15-s + (−0.809 − 0.587i)16-s + (0.913 − 0.406i)17-s + (−0.978 + 0.207i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 341 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.145 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 341 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.145 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4480391712 + 0.5187006902i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4480391712 + 0.5187006902i\) |
\(L(1)\) |
\(\approx\) |
\(0.5676161462 + 0.2880025594i\) |
\(L(1)\) |
\(\approx\) |
\(0.5676161462 + 0.2880025594i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 3 | \( 1 + (-0.978 - 0.207i)T \) |
| 5 | \( 1 + (-0.104 + 0.994i)T \) |
| 7 | \( 1 + (0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.913 + 0.406i)T \) |
| 17 | \( 1 + (0.913 - 0.406i)T \) |
| 19 | \( 1 + (-0.978 - 0.207i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + (0.669 + 0.743i)T \) |
| 41 | \( 1 + (0.669 - 0.743i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.309 + 0.951i)T \) |
| 53 | \( 1 + (0.913 + 0.406i)T \) |
| 59 | \( 1 + (0.669 + 0.743i)T \) |
| 61 | \( 1 + (-0.809 - 0.587i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.104 + 0.994i)T \) |
| 73 | \( 1 + (-0.978 + 0.207i)T \) |
| 79 | \( 1 + (-0.104 - 0.994i)T \) |
| 83 | \( 1 + (-0.104 + 0.994i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.74305132445253497044716302108, −23.5669801074990029836865004372, −23.14074199912663162682483304634, −21.61834387747056216003300971545, −21.057696546526740727133351905863, −20.404467236908453936293799098492, −19.34615628715843892792839224093, −18.25106968686686128383562725135, −17.48633420964987429799351134698, −16.717538051626924759104312854223, −16.28650395530828655020296976764, −15.02135222611720272483103425045, −13.292287027828210618722236127119, −12.63033872701099013035125070715, −11.68965441961540401235407620940, −10.81431653169049442889150923339, −10.20026013650870120120065750544, −8.93823360218740816561269306077, −8.08937571566212028540024067864, −7.03029134745888146507616257157, −5.67234540313060668442536981778, −4.49588387571685999986298901950, −3.645921272833300495278339861133, −1.568206409687874415544218145423, −0.794962297422011781204554731794,
1.25069875703348975417773022475, 2.5283642784957545470388120564, 4.49897659991135799647248702926, 5.72786733341127313162338483062, 6.35632788809633843249693576998, 7.331300201745284899926858192917, 8.256786139273607032421670499732, 9.4849777996704374551963401263, 10.62082869796181749252088707615, 11.20879334565683172245943049736, 11.9821553103725169364281096698, 13.539651768831932152916466417185, 14.68595007117500812899965913198, 15.38173311720668190613672444925, 16.300050378383654489882700047345, 17.29132457692961581572318112062, 18.01512650216897984399238919568, 18.788196469829202863869535658156, 19.13430644193652012180934687192, 20.8971725315119788453418107861, 21.654904981765063981438635141782, 22.96194820369866092575521637574, 23.30948996205607522280544052940, 24.32666679640602414537451676774, 25.21923545481552729977444273571