| L(s) = 1 | + (−0.773 − 0.634i)3-s + (−0.956 + 0.290i)5-s + (−0.195 + 0.980i)7-s + (0.195 + 0.980i)9-s + (−0.995 − 0.0980i)11-s + (0.923 + 0.382i)15-s + (0.382 + 0.923i)17-s + (−0.881 + 0.471i)19-s + (0.773 − 0.634i)21-s + (0.555 − 0.831i)23-s + (0.831 − 0.555i)25-s + (0.471 − 0.881i)27-s + (0.995 − 0.0980i)29-s + (−0.707 + 0.707i)31-s + (0.707 + 0.707i)33-s + ⋯ |
| L(s) = 1 | + (−0.773 − 0.634i)3-s + (−0.956 + 0.290i)5-s + (−0.195 + 0.980i)7-s + (0.195 + 0.980i)9-s + (−0.995 − 0.0980i)11-s + (0.923 + 0.382i)15-s + (0.382 + 0.923i)17-s + (−0.881 + 0.471i)19-s + (0.773 − 0.634i)21-s + (0.555 − 0.831i)23-s + (0.831 − 0.555i)25-s + (0.471 − 0.881i)27-s + (0.995 − 0.0980i)29-s + (−0.707 + 0.707i)31-s + (0.707 + 0.707i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.170 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.170 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4962350286 + 0.4177666895i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4962350286 + 0.4177666895i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6273290180 + 0.05080121539i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6273290180 + 0.05080121539i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.773 - 0.634i)T \) |
| 5 | \( 1 + (-0.956 + 0.290i)T \) |
| 7 | \( 1 + (-0.195 + 0.980i)T \) |
| 11 | \( 1 + (-0.995 - 0.0980i)T \) |
| 17 | \( 1 + (0.382 + 0.923i)T \) |
| 19 | \( 1 + (-0.881 + 0.471i)T \) |
| 23 | \( 1 + (0.555 - 0.831i)T \) |
| 29 | \( 1 + (0.995 - 0.0980i)T \) |
| 31 | \( 1 + (-0.707 + 0.707i)T \) |
| 37 | \( 1 + (0.471 - 0.881i)T \) |
| 41 | \( 1 + (0.555 - 0.831i)T \) |
| 43 | \( 1 + (-0.773 + 0.634i)T \) |
| 47 | \( 1 + (0.382 + 0.923i)T \) |
| 53 | \( 1 + (0.995 + 0.0980i)T \) |
| 59 | \( 1 + (-0.290 - 0.956i)T \) |
| 61 | \( 1 + (0.634 - 0.773i)T \) |
| 67 | \( 1 + (0.773 + 0.634i)T \) |
| 71 | \( 1 + (0.980 + 0.195i)T \) |
| 73 | \( 1 + (-0.195 - 0.980i)T \) |
| 79 | \( 1 + (0.923 + 0.382i)T \) |
| 83 | \( 1 + (-0.471 - 0.881i)T \) |
| 89 | \( 1 + (0.831 - 0.555i)T \) |
| 97 | \( 1 + (-0.707 + 0.707i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.56648860481260061456686476762, −18.01028044654312334274398409757, −17.02373927916921786138276866587, −16.65173922007092383371227746439, −16.01578322936301182731708028955, −15.327982723291175759943145521877, −14.886533870741028074910972762156, −13.68194873595021959108638240214, −13.06834313863558082395981717444, −12.32973818964607464379078716145, −11.51008215963868730539085797569, −11.05736923573728418821845125035, −10.31149614968981429644911544640, −9.726094544704963330424640070109, −8.80688927933380390691910499048, −7.93336664181623240560477451671, −7.1960848618414877568002355380, −6.64654143860862149753094923991, −5.4586484533883289530932398927, −4.88933526000202329889470944155, −4.21965484450622190245101299498, −3.52840287937714270328802879058, −2.67783027408533720326656742058, −1.07233866332046949073560747647, −0.35835876494271064434821508691,
0.74350944773089989008651596271, 2.03086016594475048841939570412, 2.67135796696571757370199477458, 3.65786172381801079182549989695, 4.66144649292351876216743904722, 5.35750879617176300533305051865, 6.16634984400070668322260897955, 6.71893275012526405098732643055, 7.68257864462894782872892010924, 8.204764211230736535789031802319, 8.83183556048329321554262349259, 10.15266360828248856990840475169, 10.759370257607976391837966705421, 11.24829250336846490613041477217, 12.28938362295307534278097259389, 12.507998598468351247801384155637, 13.06061094267394202294003340752, 14.297295708639904845276618612700, 14.878082307364131211287649629050, 15.742218232585637616851428097, 16.140377689407999883402976545125, 16.90955328599391232051106724422, 17.803860448609856414455856108946, 18.39157160708262831602110453396, 19.04234296468182253049014594954