| L(s) = 1 | + (−0.881 + 0.471i)3-s + (−0.773 + 0.634i)5-s + (−0.555 − 0.831i)7-s + (0.555 − 0.831i)9-s + (0.290 + 0.956i)11-s + (0.382 − 0.923i)15-s + (−0.923 + 0.382i)17-s + (0.995 − 0.0980i)19-s + (0.881 + 0.471i)21-s + (0.980 − 0.195i)23-s + (0.195 − 0.980i)25-s + (−0.0980 + 0.995i)27-s + (−0.290 + 0.956i)29-s + (0.707 − 0.707i)31-s + (−0.707 − 0.707i)33-s + ⋯ |
| L(s) = 1 | + (−0.881 + 0.471i)3-s + (−0.773 + 0.634i)5-s + (−0.555 − 0.831i)7-s + (0.555 − 0.831i)9-s + (0.290 + 0.956i)11-s + (0.382 − 0.923i)15-s + (−0.923 + 0.382i)17-s + (0.995 − 0.0980i)19-s + (0.881 + 0.471i)21-s + (0.980 − 0.195i)23-s + (0.195 − 0.980i)25-s + (−0.0980 + 0.995i)27-s + (−0.290 + 0.956i)29-s + (0.707 − 0.707i)31-s + (−0.707 − 0.707i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7700355554 + 0.1632281820i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7700355554 + 0.1632281820i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6552280589 + 0.1234885164i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6552280589 + 0.1234885164i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.881 + 0.471i)T \) |
| 5 | \( 1 + (-0.773 + 0.634i)T \) |
| 7 | \( 1 + (-0.555 - 0.831i)T \) |
| 11 | \( 1 + (0.290 + 0.956i)T \) |
| 17 | \( 1 + (-0.923 + 0.382i)T \) |
| 19 | \( 1 + (0.995 - 0.0980i)T \) |
| 23 | \( 1 + (0.980 - 0.195i)T \) |
| 29 | \( 1 + (-0.290 + 0.956i)T \) |
| 31 | \( 1 + (0.707 - 0.707i)T \) |
| 37 | \( 1 + (-0.0980 + 0.995i)T \) |
| 41 | \( 1 + (0.980 - 0.195i)T \) |
| 43 | \( 1 + (-0.881 - 0.471i)T \) |
| 47 | \( 1 + (-0.923 + 0.382i)T \) |
| 53 | \( 1 + (-0.290 - 0.956i)T \) |
| 59 | \( 1 + (-0.634 - 0.773i)T \) |
| 61 | \( 1 + (-0.471 - 0.881i)T \) |
| 67 | \( 1 + (0.881 - 0.471i)T \) |
| 71 | \( 1 + (-0.831 + 0.555i)T \) |
| 73 | \( 1 + (-0.555 + 0.831i)T \) |
| 79 | \( 1 + (0.382 - 0.923i)T \) |
| 83 | \( 1 + (0.0980 + 0.995i)T \) |
| 89 | \( 1 + (0.195 - 0.980i)T \) |
| 97 | \( 1 + (0.707 - 0.707i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.81120486059719753969034317490, −18.16944258475491030118082142959, −17.413779248318732031817687905869, −16.61814926792983291414641678574, −16.05391692459788670935487076531, −15.69642098550169776119175914659, −14.79707203547190427448842191373, −13.55661268329909094497024965414, −13.22944832233414930229678532486, −12.37178427837945546861315360602, −11.77142466466455456673840448871, −11.38523096556640752822992454493, −10.600468730621673212976272877231, −9.42643723596781045226366115380, −8.94487876976933333685575849049, −8.08218036189032499161725034973, −7.35059736831688711328410265350, −6.529242453326332093763824816237, −5.848009376470897630071252386888, −5.152613695470150085117210356308, −4.449064937383337914174378624033, −3.41355065581472024367419094604, −2.60300829563010909265094497769, −1.3851378880171104094522298717, −0.58213094540500391593427611025,
0.5093912817994910366202381917, 1.6099424734842095023775715777, 3.02054038475574886105543723992, 3.6107360437327496228859065588, 4.47252700857896012171416914698, 4.883356281551866744286417010006, 6.13800027502460947148122296700, 6.87362619866115905438247505244, 7.102554761440155202817692611580, 8.110104182279677150300408099807, 9.268236478452091515423377155436, 9.86765727702310528885812888843, 10.53758018149172181022884567814, 11.19704843889525535652629044082, 11.68950748361927891934328376576, 12.59659737110042558450890111741, 13.117089109043742564336607373933, 14.193067247807245438757381261480, 14.92529731813736232719867051243, 15.5564450749639921712403710138, 16.04404376513660091187814772293, 16.9034441058846207665812885208, 17.3930868650124537156246678482, 18.13650915797045026201553626972, 18.823128767221817095765832272167