| L(s) = 1 | + (0.634 + 0.773i)3-s + (0.290 − 0.956i)5-s + (0.195 + 0.980i)7-s + (−0.195 + 0.980i)9-s + (−0.0980 − 0.995i)11-s + (0.923 − 0.382i)15-s + (0.382 − 0.923i)17-s + (−0.471 + 0.881i)19-s + (−0.634 + 0.773i)21-s + (−0.555 − 0.831i)23-s + (−0.831 − 0.555i)25-s + (−0.881 + 0.471i)27-s + (0.0980 − 0.995i)29-s + (−0.707 − 0.707i)31-s + (0.707 − 0.707i)33-s + ⋯ |
| L(s) = 1 | + (0.634 + 0.773i)3-s + (0.290 − 0.956i)5-s + (0.195 + 0.980i)7-s + (−0.195 + 0.980i)9-s + (−0.0980 − 0.995i)11-s + (0.923 − 0.382i)15-s + (0.382 − 0.923i)17-s + (−0.471 + 0.881i)19-s + (−0.634 + 0.773i)21-s + (−0.555 − 0.831i)23-s + (−0.831 − 0.555i)25-s + (−0.881 + 0.471i)27-s + (0.0980 − 0.995i)29-s + (−0.707 − 0.707i)31-s + (0.707 − 0.707i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.170 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.170 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.114786280 - 0.9385080595i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.114786280 - 0.9385080595i\) |
| \(L(1)\) |
\(\approx\) |
\(1.200793703 + 0.005571565617i\) |
| \(L(1)\) |
\(\approx\) |
\(1.200793703 + 0.005571565617i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (0.634 + 0.773i)T \) |
| 5 | \( 1 + (0.290 - 0.956i)T \) |
| 7 | \( 1 + (0.195 + 0.980i)T \) |
| 11 | \( 1 + (-0.0980 - 0.995i)T \) |
| 17 | \( 1 + (0.382 - 0.923i)T \) |
| 19 | \( 1 + (-0.471 + 0.881i)T \) |
| 23 | \( 1 + (-0.555 - 0.831i)T \) |
| 29 | \( 1 + (0.0980 - 0.995i)T \) |
| 31 | \( 1 + (-0.707 - 0.707i)T \) |
| 37 | \( 1 + (-0.881 + 0.471i)T \) |
| 41 | \( 1 + (-0.555 - 0.831i)T \) |
| 43 | \( 1 + (0.634 - 0.773i)T \) |
| 47 | \( 1 + (0.382 - 0.923i)T \) |
| 53 | \( 1 + (0.0980 + 0.995i)T \) |
| 59 | \( 1 + (-0.956 - 0.290i)T \) |
| 61 | \( 1 + (0.773 - 0.634i)T \) |
| 67 | \( 1 + (-0.634 - 0.773i)T \) |
| 71 | \( 1 + (-0.980 + 0.195i)T \) |
| 73 | \( 1 + (0.195 - 0.980i)T \) |
| 79 | \( 1 + (0.923 - 0.382i)T \) |
| 83 | \( 1 + (0.881 + 0.471i)T \) |
| 89 | \( 1 + (-0.831 - 0.555i)T \) |
| 97 | \( 1 + (-0.707 - 0.707i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.22480896313437205490669286387, −18.13687818741762282162178241375, −17.70984908772588498991106921047, −17.35097998160975006141302835293, −16.22619132934127512622757482531, −15.23693950557771536654257807114, −14.68364688967374624695583995436, −14.22501479932572222423152657109, −13.468349726461307383532131561587, −12.88988853994100547018043808060, −12.17010770100544784241206392494, −11.196087745853793894144039987169, −10.55560132708719000054714645874, −9.88219848241345410938868422564, −9.12359114191850662698152840894, −8.15144560165416920825665045402, −7.44373243231925222041049223991, −6.99823931636735256079169435471, −6.39683863590863949333712229446, −5.40016791639918947620721361790, −4.257689098480086211520950420504, −3.55086091097143001882184507686, −2.79568271873031814277978008863, −1.84686364732065576900625075754, −1.32939111022055179590185652526,
0.354506300445220906878036253189, 1.80541069069396211453481019969, 2.386400499437595795177138846937, 3.34802453287164068909917035040, 4.1361306175138454621779138393, 4.97617014121653436463615782711, 5.59507835255272497152543532792, 6.15629277323913447337146329521, 7.63187099444937566732894286507, 8.28966129549989675981947057986, 8.80104950735100726439947730250, 9.34354499975991315207930856181, 10.124155593840037247341427569403, 10.840778976755071642699774172550, 11.87714806046523255973189485969, 12.26947735443431442084586486339, 13.317643457038986798279588952542, 13.89433993607985497769760012452, 14.46772578320616631638562011545, 15.46291306465816299823674790, 15.78814491424221327446439187799, 16.739755882437964103953363510646, 16.87074173155368383211640596923, 18.1613778649235660801040066978, 18.80971774988873516652585216495