| L(s) = 1 | + (−0.0980 − 0.995i)3-s + (0.471 − 0.881i)5-s + (0.980 + 0.195i)7-s + (−0.980 + 0.195i)9-s + (−0.773 + 0.634i)11-s + (−0.923 − 0.382i)15-s + (−0.382 − 0.923i)17-s + (0.956 + 0.290i)19-s + (0.0980 − 0.995i)21-s + (0.831 + 0.555i)23-s + (−0.555 − 0.831i)25-s + (0.290 + 0.956i)27-s + (0.773 + 0.634i)29-s + (−0.707 + 0.707i)31-s + (0.707 + 0.707i)33-s + ⋯ |
| L(s) = 1 | + (−0.0980 − 0.995i)3-s + (0.471 − 0.881i)5-s + (0.980 + 0.195i)7-s + (−0.980 + 0.195i)9-s + (−0.773 + 0.634i)11-s + (−0.923 − 0.382i)15-s + (−0.382 − 0.923i)17-s + (0.956 + 0.290i)19-s + (0.0980 − 0.995i)21-s + (0.831 + 0.555i)23-s + (−0.555 − 0.831i)25-s + (0.290 + 0.956i)27-s + (0.773 + 0.634i)29-s + (−0.707 + 0.707i)31-s + (0.707 + 0.707i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.576 - 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.576 - 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.764102375 - 0.9146930458i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.764102375 - 0.9146930458i\) |
| \(L(1)\) |
\(\approx\) |
\(1.148220867 - 0.4353260717i\) |
| \(L(1)\) |
\(\approx\) |
\(1.148220867 - 0.4353260717i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.0980 - 0.995i)T \) |
| 5 | \( 1 + (0.471 - 0.881i)T \) |
| 7 | \( 1 + (0.980 + 0.195i)T \) |
| 11 | \( 1 + (-0.773 + 0.634i)T \) |
| 17 | \( 1 + (-0.382 - 0.923i)T \) |
| 19 | \( 1 + (0.956 + 0.290i)T \) |
| 23 | \( 1 + (0.831 + 0.555i)T \) |
| 29 | \( 1 + (0.773 + 0.634i)T \) |
| 31 | \( 1 + (-0.707 + 0.707i)T \) |
| 37 | \( 1 + (0.290 + 0.956i)T \) |
| 41 | \( 1 + (0.831 + 0.555i)T \) |
| 43 | \( 1 + (-0.0980 + 0.995i)T \) |
| 47 | \( 1 + (-0.382 - 0.923i)T \) |
| 53 | \( 1 + (0.773 - 0.634i)T \) |
| 59 | \( 1 + (0.881 + 0.471i)T \) |
| 61 | \( 1 + (0.995 - 0.0980i)T \) |
| 67 | \( 1 + (0.0980 + 0.995i)T \) |
| 71 | \( 1 + (0.195 - 0.980i)T \) |
| 73 | \( 1 + (0.980 - 0.195i)T \) |
| 79 | \( 1 + (-0.923 - 0.382i)T \) |
| 83 | \( 1 + (-0.290 + 0.956i)T \) |
| 89 | \( 1 + (-0.555 - 0.831i)T \) |
| 97 | \( 1 + (-0.707 + 0.707i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.86799082593711358210165122481, −18.14290050879942326023448296960, −17.51114591432239117535458166170, −17.02010138998498664790038175561, −16.07758472318209110558400186471, −15.44330087101910858235961532885, −14.81550486014459370573660280585, −14.2122604278756596212548734274, −13.66608410335053950554580776761, −12.74905382433824942772284691527, −11.56799869144011289350498444807, −11.03213907934331207133174294407, −10.666083950826768833635082107982, −9.95212493939890566881727830066, −9.11947919547230901078537995106, −8.37139074573980172641217934177, −7.63544687137012143421570660413, −6.737972937260979498535921851673, −5.6960706503010674370710093540, −5.40761668024031942363539467688, −4.37680276446642905379393268829, −3.6909864487317166824122712306, −2.74664105855467551046637434191, −2.17029886707003643034905581880, −0.76110832005261832707379895512,
0.888003525735496832868908169336, 1.49263534824686809184049102406, 2.30541566079655414442417704865, 3.05985679001460662725423306078, 4.52834708179340593643489539258, 5.25590141090074094825567409439, 5.45280751447042143818275059422, 6.712298026504982231238237698082, 7.35202628387625162432014343771, 8.07944133625924422237110686702, 8.66215189411281500827057906090, 9.44225088268958805708247267209, 10.27694529561777873986357147987, 11.37977613591554951630335380354, 11.71023884005729767949539660068, 12.61539361816598243949019050414, 13.07974308888092083907832303728, 13.7978377610517154910408383494, 14.38253560890221442645422270969, 15.23032798271950165495671138304, 16.16908451730667335596596100235, 16.72673259410224117381185603213, 17.76992089374747127817462792568, 17.91502785021755965056596908813, 18.40911966006139699124198396453