L(s) = 1 | + (−0.0327 + 0.999i)3-s + (0.773 − 0.634i)5-s + (−0.442 + 0.896i)7-s + (−0.997 − 0.0654i)9-s + (0.973 + 0.227i)11-s + (0.608 + 0.793i)15-s + (0.793 + 0.608i)17-s + (0.582 + 0.812i)19-s + (−0.881 − 0.471i)21-s + (−0.321 + 0.946i)23-s + (0.195 − 0.980i)25-s + (0.0980 − 0.995i)27-s + (0.683 + 0.729i)29-s + (0.707 − 0.707i)31-s + (−0.258 + 0.965i)33-s + ⋯ |
L(s) = 1 | + (−0.0327 + 0.999i)3-s + (0.773 − 0.634i)5-s + (−0.442 + 0.896i)7-s + (−0.997 − 0.0654i)9-s + (0.973 + 0.227i)11-s + (0.608 + 0.793i)15-s + (0.793 + 0.608i)17-s + (0.582 + 0.812i)19-s + (−0.881 − 0.471i)21-s + (−0.321 + 0.946i)23-s + (0.195 − 0.980i)25-s + (0.0980 − 0.995i)27-s + (0.683 + 0.729i)29-s + (0.707 − 0.707i)31-s + (−0.258 + 0.965i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.224 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.224 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.276366641 + 1.604430427i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.276366641 + 1.604430427i\) |
\(L(1)\) |
\(\approx\) |
\(1.141512501 + 0.5337312062i\) |
\(L(1)\) |
\(\approx\) |
\(1.141512501 + 0.5337312062i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.0327 + 0.999i)T \) |
| 5 | \( 1 + (0.773 - 0.634i)T \) |
| 7 | \( 1 + (-0.442 + 0.896i)T \) |
| 11 | \( 1 + (0.973 + 0.227i)T \) |
| 17 | \( 1 + (0.793 + 0.608i)T \) |
| 19 | \( 1 + (0.582 + 0.812i)T \) |
| 23 | \( 1 + (-0.321 + 0.946i)T \) |
| 29 | \( 1 + (0.683 + 0.729i)T \) |
| 31 | \( 1 + (0.707 - 0.707i)T \) |
| 37 | \( 1 + (0.812 + 0.582i)T \) |
| 41 | \( 1 + (-0.321 + 0.946i)T \) |
| 43 | \( 1 + (-0.0327 - 0.999i)T \) |
| 47 | \( 1 + (-0.923 + 0.382i)T \) |
| 53 | \( 1 + (0.290 + 0.956i)T \) |
| 59 | \( 1 + (0.352 - 0.935i)T \) |
| 61 | \( 1 + (0.528 - 0.849i)T \) |
| 67 | \( 1 + (0.0327 - 0.999i)T \) |
| 71 | \( 1 + (0.896 + 0.442i)T \) |
| 73 | \( 1 + (-0.555 + 0.831i)T \) |
| 79 | \( 1 + (0.382 - 0.923i)T \) |
| 83 | \( 1 + (-0.0980 - 0.995i)T \) |
| 89 | \( 1 + (0.751 + 0.659i)T \) |
| 97 | \( 1 + (-0.965 - 0.258i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.63963354431555094409063904688, −17.812416258105875810829396817159, −17.55546152754183199897887065707, −16.63509108523539184378228955145, −16.20825037694758491185427770950, −14.84218503548136596030724693253, −14.29684260573093641070754355109, −13.72094922653960839781635892989, −13.33053644635052097481218150051, −12.38771072568315047826963111068, −11.68620137532955586413339769898, −11.02174132293380554241016552927, −10.13459892331694696221219853411, −9.5765009035768621231493456098, −8.69028019511611656207187998486, −7.79937243081940529901081806860, −6.94570798334812128918074436049, −6.66654954776801498911379319331, −5.950463583548391563203104774936, −5.05218797760022053732630850059, −3.92068903758214432815125177831, −3.00946349441840293808186961382, −2.46037293174973249264989068862, −1.30803356915201516038205075177, −0.69958872918380845814463287869,
1.12647870706070850188892667226, 1.99013033448485227522920179678, 3.05100475770685581695811966259, 3.69777640327105667272863838197, 4.63766376764760194631182943177, 5.366898099130500803438214703767, 5.97704024337842933874374702572, 6.51444692129391800621678882926, 7.99264504309539554710262554006, 8.54542522019980439389318576687, 9.491683710525139838677617684241, 9.64523358946530551957103243255, 10.319605524209136566547743645142, 11.48727632574279512405116713683, 12.01836077531784750634355535817, 12.64168536548389570825162884200, 13.61057023390121408314717912491, 14.31938319928366140616367391303, 14.888799647298051531480583147643, 15.68693235250937803621934664716, 16.317951874799500476738074879662, 16.91361291903705002393083737979, 17.444409313168339466924825321704, 18.28329020015614351657419258508, 19.11985726965265635214012791533