Properties

Label 1-328-328.163-r1-0-0
Degree $1$
Conductor $328$
Sign $1$
Analytic cond. $35.2484$
Root an. cond. $35.2484$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s − 11-s + 13-s + 15-s − 17-s − 19-s − 21-s − 23-s + 25-s − 27-s + 29-s − 31-s + 33-s − 35-s − 37-s − 39-s + 43-s − 45-s + 47-s + 49-s + 51-s + 53-s + 55-s + 57-s + ⋯
L(s)  = 1  − 3-s − 5-s + 7-s + 9-s − 11-s + 13-s + 15-s − 17-s − 19-s − 21-s − 23-s + 25-s − 27-s + 29-s − 31-s + 33-s − 35-s − 37-s − 39-s + 43-s − 45-s + 47-s + 49-s + 51-s + 53-s + 55-s + 57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 328 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 328 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(328\)    =    \(2^{3} \cdot 41\)
Sign: $1$
Analytic conductor: \(35.2484\)
Root analytic conductor: \(35.2484\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{328} (163, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 328,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9222377102\)
\(L(\frac12)\) \(\approx\) \(0.9222377102\)
\(L(1)\) \(\approx\) \(0.6938617420\)
\(L(1)\) \(\approx\) \(0.6938617420\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
41 \( 1 \)
good3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 - T \)
19 \( 1 - T \)
23 \( 1 - T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 + T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 - T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 + T \)
79 \( 1 + T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.39728687318634225290160367533, −23.769342085448817769441332289, −23.31343971374087124911881019238, −22.29244683748628722934631824279, −21.27833801296246896974919669175, −20.55646868248078872510082385480, −19.36967219063061251075202197758, −18.27205335389807611547772813975, −17.87016643385270882099361877596, −16.66767630824168238845714942897, −15.7355181169373533199178371773, −15.25594393005592266339856913512, −13.82321634769526843078901029543, −12.70579914333292207381443863449, −11.876809866433107452954965486536, −10.86836040682847504910734917577, −10.62563967916730599129247869666, −8.741166727248704071803744129079, −7.92472395261547983805697146098, −6.90798300991365509229491241153, −5.73252580608525942001011026163, −4.667136641897646057112212700789, −3.92059862075339577995648354590, −2.06839758437722211342985034565, −0.59096478641256959031163148737, 0.59096478641256959031163148737, 2.06839758437722211342985034565, 3.92059862075339577995648354590, 4.667136641897646057112212700789, 5.73252580608525942001011026163, 6.90798300991365509229491241153, 7.92472395261547983805697146098, 8.741166727248704071803744129079, 10.62563967916730599129247869666, 10.86836040682847504910734917577, 11.876809866433107452954965486536, 12.70579914333292207381443863449, 13.82321634769526843078901029543, 15.25594393005592266339856913512, 15.7355181169373533199178371773, 16.66767630824168238845714942897, 17.87016643385270882099361877596, 18.27205335389807611547772813975, 19.36967219063061251075202197758, 20.55646868248078872510082385480, 21.27833801296246896974919669175, 22.29244683748628722934631824279, 23.31343971374087124911881019238, 23.769342085448817769441332289, 24.39728687318634225290160367533

Graph of the $Z$-function along the critical line