| L(s) = 1 | + (−0.546 + 0.837i)2-s + (0.999 + 0.0135i)3-s + (−0.403 − 0.914i)4-s + (0.943 − 0.331i)5-s + (−0.557 + 0.830i)6-s + (−0.860 + 0.508i)7-s + (0.986 + 0.161i)8-s + (0.999 + 0.0270i)9-s + (−0.237 + 0.971i)10-s + (−0.340 − 0.940i)11-s + (−0.391 − 0.920i)12-s + (0.648 − 0.760i)13-s + (0.0439 − 0.999i)14-s + (0.947 − 0.318i)15-s + (−0.674 + 0.738i)16-s + (−0.921 − 0.388i)17-s + ⋯ |
| L(s) = 1 | + (−0.546 + 0.837i)2-s + (0.999 + 0.0135i)3-s + (−0.403 − 0.914i)4-s + (0.943 − 0.331i)5-s + (−0.557 + 0.830i)6-s + (−0.860 + 0.508i)7-s + (0.986 + 0.161i)8-s + (0.999 + 0.0270i)9-s + (−0.237 + 0.971i)10-s + (−0.340 − 0.940i)11-s + (−0.391 − 0.920i)12-s + (0.648 − 0.760i)13-s + (0.0439 − 0.999i)14-s + (0.947 − 0.318i)15-s + (−0.674 + 0.738i)16-s + (−0.921 − 0.388i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.686400372 + 0.07244845121i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.686400372 + 0.07244845121i\) |
| \(L(1)\) |
\(\approx\) |
\(1.191134094 + 0.2138065513i\) |
| \(L(1)\) |
\(\approx\) |
\(1.191134094 + 0.2138065513i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 31 | \( 1 \) |
| good | 2 | \( 1 + (-0.546 + 0.837i)T \) |
| 3 | \( 1 + (0.999 + 0.0135i)T \) |
| 5 | \( 1 + (0.943 - 0.331i)T \) |
| 7 | \( 1 + (-0.860 + 0.508i)T \) |
| 11 | \( 1 + (-0.340 - 0.940i)T \) |
| 13 | \( 1 + (0.648 - 0.760i)T \) |
| 17 | \( 1 + (-0.921 - 0.388i)T \) |
| 19 | \( 1 + (-0.968 + 0.247i)T \) |
| 23 | \( 1 + (0.385 + 0.922i)T \) |
| 29 | \( 1 + (0.996 - 0.0809i)T \) |
| 37 | \( 1 + (0.283 - 0.959i)T \) |
| 41 | \( 1 + (0.540 + 0.841i)T \) |
| 43 | \( 1 + (0.850 - 0.526i)T \) |
| 47 | \( 1 + (0.230 - 0.972i)T \) |
| 53 | \( 1 + (0.907 + 0.419i)T \) |
| 59 | \( 1 + (0.334 + 0.942i)T \) |
| 61 | \( 1 + (-0.874 - 0.485i)T \) |
| 67 | \( 1 + (-0.905 + 0.425i)T \) |
| 71 | \( 1 + (0.929 - 0.369i)T \) |
| 73 | \( 1 + (0.446 - 0.894i)T \) |
| 79 | \( 1 + (0.446 + 0.894i)T \) |
| 83 | \( 1 + (-0.452 - 0.891i)T \) |
| 89 | \( 1 + (-0.579 - 0.814i)T \) |
| 97 | \( 1 + (-0.211 - 0.977i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.42580449483946361171664953149, −20.88196772174895463484389334483, −20.188693163136482849939713349030, −19.39677640740767155641798335451, −18.81696152696841674395429203071, −17.99433396917594451027051780261, −17.276495297647433652662253420456, −16.352066861223766401625747989438, −15.41653595503096924211276376769, −14.34036382862131097516772383703, −13.57312686615836333223651505336, −13.00434901915634338651479000101, −12.41745545610768301560386856867, −10.809085578046994039337087400037, −10.43132393388078600639436869171, −9.516049243658656571180568914762, −9.04212688136588810689799355832, −8.1415461411955047901208495543, −6.912472293635168719224877736668, −6.53671622530605355076405918493, −4.57813667453514325849073060185, −3.97501417197934428618234546041, −2.736867512543513995245109453646, −2.29815377447739864929526980045, −1.2541264851193506480876026502,
0.84774561051136818362781854721, 2.11937657607285047684359101450, 2.99568100264954890918421651928, 4.26551306290182403768347784129, 5.50938498381363409654583292370, 6.11048541807251804823588338275, 6.97725063972679029309863553535, 8.12858479586708399924811574088, 8.82694051229009395021598725762, 9.2326659788605056159128695076, 10.17899288283682034288842079787, 10.84043553361727159474721209915, 12.607923722376543660989374667217, 13.4727858186484640471280216943, 13.620053993910531601539415097950, 14.77995666069554213813829043294, 15.592740649164348636073645581101, 16.068770281962247376507736274822, 16.95959326488886086572669602527, 18.04689406848792664421829784721, 18.4342094217216442322945694046, 19.46226009214545422594844335050, 19.86105242934063591978386783630, 21.07577578025786264812581713855, 21.6024509341025346455563768210