L(s) = 1 | + (0.960 − 0.279i)2-s + (−0.899 − 0.437i)3-s + (0.843 − 0.537i)4-s + (−0.315 − 0.948i)5-s + (−0.985 − 0.168i)6-s + (−0.824 + 0.565i)7-s + (0.659 − 0.752i)8-s + (0.617 + 0.786i)9-s + (−0.568 − 0.822i)10-s + (0.124 − 0.992i)11-s + (−0.993 + 0.114i)12-s + (−0.767 + 0.641i)13-s + (−0.633 + 0.773i)14-s + (−0.131 + 0.991i)15-s + (0.422 − 0.906i)16-s + (0.708 − 0.705i)17-s + ⋯ |
L(s) = 1 | + (0.960 − 0.279i)2-s + (−0.899 − 0.437i)3-s + (0.843 − 0.537i)4-s + (−0.315 − 0.948i)5-s + (−0.985 − 0.168i)6-s + (−0.824 + 0.565i)7-s + (0.659 − 0.752i)8-s + (0.617 + 0.786i)9-s + (−0.568 − 0.822i)10-s + (0.124 − 0.992i)11-s + (−0.993 + 0.114i)12-s + (−0.767 + 0.641i)13-s + (−0.633 + 0.773i)14-s + (−0.131 + 0.991i)15-s + (0.422 − 0.906i)16-s + (0.708 − 0.705i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.849 + 0.527i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.849 + 0.527i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1990989081 - 0.6982634444i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.1990989081 - 0.6982634444i\) |
\(L(1)\) |
\(\approx\) |
\(0.8334680346 - 0.5726277221i\) |
\(L(1)\) |
\(\approx\) |
\(0.8334680346 - 0.5726277221i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.960 - 0.279i)T \) |
| 3 | \( 1 + (-0.899 - 0.437i)T \) |
| 5 | \( 1 + (-0.315 - 0.948i)T \) |
| 7 | \( 1 + (-0.824 + 0.565i)T \) |
| 11 | \( 1 + (0.124 - 0.992i)T \) |
| 13 | \( 1 + (-0.767 + 0.641i)T \) |
| 17 | \( 1 + (0.708 - 0.705i)T \) |
| 19 | \( 1 + (-0.867 + 0.497i)T \) |
| 23 | \( 1 + (0.111 - 0.993i)T \) |
| 29 | \( 1 + (-0.910 - 0.412i)T \) |
| 37 | \( 1 + (-0.557 - 0.830i)T \) |
| 41 | \( 1 + (-0.488 + 0.872i)T \) |
| 43 | \( 1 + (-0.958 - 0.286i)T \) |
| 47 | \( 1 + (-0.674 + 0.738i)T \) |
| 53 | \( 1 + (-0.340 + 0.940i)T \) |
| 59 | \( 1 + (0.938 + 0.344i)T \) |
| 61 | \( 1 + (-0.954 + 0.299i)T \) |
| 67 | \( 1 + (-0.839 + 0.543i)T \) |
| 71 | \( 1 + (0.994 - 0.107i)T \) |
| 73 | \( 1 + (0.835 + 0.548i)T \) |
| 79 | \( 1 + (0.835 - 0.548i)T \) |
| 83 | \( 1 + (-0.722 - 0.691i)T \) |
| 89 | \( 1 + (-0.476 + 0.879i)T \) |
| 97 | \( 1 + (-0.998 + 0.0607i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.397445299207383405375287221373, −21.81001359353077807364331217561, −20.93331140441809943704287321523, −19.916364764432087747585595525523, −19.319425135594606175096853543729, −18.06586314493075897319288765067, −17.12484397210399236881630005924, −16.8115456918501699701137583767, −15.566751938785199918632203500067, −15.20647913640509104783048952620, −14.55447878378577669193836460061, −13.32977205045223920500329072877, −12.59565880928424450737452180243, −11.947915160071995728099415964, −11.00378326954880604893194657834, −10.31309592576134565656804836596, −9.70398959287284604192100658960, −7.91801679793365938936583014381, −6.96675493562192633385512702049, −6.69431842783662034132657871406, −5.61700954831170640314668064814, −4.7783612514405472483022812659, −3.74424545403704972405461532209, −3.27739069710920686582977815683, −1.87973709740140510804806243631,
0.2391880315869124372819899717, 1.49319545325665018920610586644, 2.57744937118011498121448089320, 3.77402142166107791597395209357, 4.71005168546099419404210538842, 5.49035531545962349150891091434, 6.15970235883801129680641120067, 6.97733798110599979136384508487, 8.04708731592609406652334437206, 9.25089248687758278919394891635, 10.15540879411799454254324101735, 11.21054681362306691022348436220, 11.93835213201518392620255531454, 12.42594613417600753391196297231, 13.05934022637711753907911044452, 13.87137099467692813557728524260, 14.92891136547221457982547477116, 15.942252910054476408353436718309, 16.663856746074900625114333163599, 16.758226458652100484929183035257, 18.48297886566647141314385851677, 19.10875018569987049933832719178, 19.594977592512591371853222020640, 20.7739513323920286729065086785, 21.46249431483284346630916246578