L(s) = 1 | + (0.151 + 0.988i)2-s + (−0.985 + 0.168i)3-s + (−0.954 + 0.299i)4-s + (0.470 + 0.882i)5-s + (−0.315 − 0.948i)6-s + (−0.378 + 0.925i)7-s + (−0.440 − 0.897i)8-s + (0.943 − 0.331i)9-s + (−0.801 + 0.598i)10-s + (0.409 − 0.912i)11-s + (0.890 − 0.455i)12-s + (−0.184 − 0.982i)13-s + (−0.972 − 0.234i)14-s + (−0.612 − 0.790i)15-s + (0.820 − 0.571i)16-s + (0.963 − 0.266i)17-s + ⋯ |
L(s) = 1 | + (0.151 + 0.988i)2-s + (−0.985 + 0.168i)3-s + (−0.954 + 0.299i)4-s + (0.470 + 0.882i)5-s + (−0.315 − 0.948i)6-s + (−0.378 + 0.925i)7-s + (−0.440 − 0.897i)8-s + (0.943 − 0.331i)9-s + (−0.801 + 0.598i)10-s + (0.409 − 0.912i)11-s + (0.890 − 0.455i)12-s + (−0.184 − 0.982i)13-s + (−0.972 − 0.234i)14-s + (−0.612 − 0.790i)15-s + (0.820 − 0.571i)16-s + (0.963 − 0.266i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.945 + 0.324i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.945 + 0.324i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1746488658 + 1.048279641i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1746488658 + 1.048279641i\) |
\(L(1)\) |
\(\approx\) |
\(0.5934442960 + 0.6262152802i\) |
\(L(1)\) |
\(\approx\) |
\(0.5934442960 + 0.6262152802i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.151 + 0.988i)T \) |
| 3 | \( 1 + (-0.985 + 0.168i)T \) |
| 5 | \( 1 + (0.470 + 0.882i)T \) |
| 7 | \( 1 + (-0.378 + 0.925i)T \) |
| 11 | \( 1 + (0.409 - 0.912i)T \) |
| 13 | \( 1 + (-0.184 - 0.982i)T \) |
| 17 | \( 1 + (0.963 - 0.266i)T \) |
| 19 | \( 1 + (0.0168 + 0.999i)T \) |
| 23 | \( 1 + (0.528 + 0.848i)T \) |
| 29 | \( 1 + (0.528 + 0.848i)T \) |
| 37 | \( 1 + (0.943 + 0.331i)T \) |
| 41 | \( 1 + (0.997 + 0.0675i)T \) |
| 43 | \( 1 + (-0.801 - 0.598i)T \) |
| 47 | \( 1 + (0.528 + 0.848i)T \) |
| 53 | \( 1 + (0.638 + 0.769i)T \) |
| 59 | \( 1 + (0.943 + 0.331i)T \) |
| 61 | \( 1 + (-0.0506 - 0.998i)T \) |
| 67 | \( 1 + (-0.713 - 0.701i)T \) |
| 71 | \( 1 + (0.0168 - 0.999i)T \) |
| 73 | \( 1 + (0.283 + 0.959i)T \) |
| 79 | \( 1 + (0.283 - 0.959i)T \) |
| 83 | \( 1 + (-0.931 - 0.363i)T \) |
| 89 | \( 1 + (-0.612 + 0.790i)T \) |
| 97 | \( 1 + (-0.954 - 0.299i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.30370380662146131597478816229, −20.814666391124886810557767071563, −19.78697594138964627264294871043, −19.300089147689257133739873010709, −18.19049108212052970343281780033, −17.467055362486352963069608598695, −16.87296033154158624960459521661, −16.3025919607922290584865074730, −14.8740487628452758142565362559, −13.883616723337449556545634017317, −13.1296085438305311105191718062, −12.560298154795233716634717693970, −11.83584606201167305635525647681, −11.0605567982531228127238866118, −9.885041128483136200807527147871, −9.81593841822879478990999634495, −8.61984299867672273832875533269, −7.30582783587374569240584293191, −6.4181667777133849944968957216, −5.3940643578141649642386818404, −4.43410282427067239631836302637, −4.1670671351329442075074418648, −2.45344898083576643273430923330, −1.40191910112241227747403010989, −0.65175923093249747189748425555,
1.10086397717939668140988995794, 2.97388347151868243276063772648, 3.65100499962273482790499813902, 5.13582970058274032465675554454, 5.78678328103876678771266726460, 6.14312716786456541414520335477, 7.13679916011122866201611551193, 8.01324006402563168742753233465, 9.22564800192390316521823093770, 9.89683276362114849910779244766, 10.74020310714393303630838691577, 11.83074320825428385238425094300, 12.54263077623938376970830841021, 13.42504084252710167837678136850, 14.40932546956902421542239876790, 15.06960709942949681356141417547, 15.845352653373814697578503363537, 16.57179804566471445080754420223, 17.2815356230211661987674319680, 18.16221661390100328814316711533, 18.56690354763352432875042337394, 19.31565680954197258497563426192, 21.08670379940600271041940935164, 21.72274554970500952517675272238, 22.21089326971145063016295587145