L(s) = 1 | + (0.111 + 0.993i)2-s + (−0.776 + 0.630i)3-s + (−0.975 + 0.221i)4-s + (0.217 + 0.975i)5-s + (−0.713 − 0.701i)6-s + (−0.968 − 0.247i)7-s + (−0.328 − 0.944i)8-s + (0.204 − 0.978i)9-s + (−0.945 + 0.325i)10-s + (−0.880 + 0.473i)11-s + (0.617 − 0.786i)12-s + (0.952 − 0.305i)13-s + (0.138 − 0.990i)14-s + (−0.784 − 0.620i)15-s + (0.902 − 0.431i)16-s + (−0.958 − 0.286i)17-s + ⋯ |
L(s) = 1 | + (0.111 + 0.993i)2-s + (−0.776 + 0.630i)3-s + (−0.975 + 0.221i)4-s + (0.217 + 0.975i)5-s + (−0.713 − 0.701i)6-s + (−0.968 − 0.247i)7-s + (−0.328 − 0.944i)8-s + (0.204 − 0.978i)9-s + (−0.945 + 0.325i)10-s + (−0.880 + 0.473i)11-s + (0.617 − 0.786i)12-s + (0.952 − 0.305i)13-s + (0.138 − 0.990i)14-s + (−0.784 − 0.620i)15-s + (0.902 − 0.431i)16-s + (−0.958 − 0.286i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.249 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.249 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5529921408 + 0.4285298051i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5529921408 + 0.4285298051i\) |
\(L(1)\) |
\(\approx\) |
\(0.5236449304 + 0.4420012925i\) |
\(L(1)\) |
\(\approx\) |
\(0.5236449304 + 0.4420012925i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.111 + 0.993i)T \) |
| 3 | \( 1 + (-0.776 + 0.630i)T \) |
| 5 | \( 1 + (0.217 + 0.975i)T \) |
| 7 | \( 1 + (-0.968 - 0.247i)T \) |
| 11 | \( 1 + (-0.880 + 0.473i)T \) |
| 13 | \( 1 + (0.952 - 0.305i)T \) |
| 17 | \( 1 + (-0.958 - 0.286i)T \) |
| 19 | \( 1 + (0.0573 - 0.998i)T \) |
| 23 | \( 1 + (0.947 + 0.318i)T \) |
| 29 | \( 1 + (-0.579 - 0.814i)T \) |
| 37 | \( 1 + (0.409 - 0.912i)T \) |
| 41 | \( 1 + (0.973 - 0.227i)T \) |
| 43 | \( 1 + (0.956 - 0.292i)T \) |
| 47 | \( 1 + (-0.0101 + 0.999i)T \) |
| 53 | \( 1 + (-0.987 - 0.154i)T \) |
| 59 | \( 1 + (-0.740 - 0.671i)T \) |
| 61 | \( 1 + (-0.440 - 0.897i)T \) |
| 67 | \( 1 + (-0.184 + 0.982i)T \) |
| 71 | \( 1 + (0.967 + 0.253i)T \) |
| 73 | \( 1 + (0.828 - 0.560i)T \) |
| 79 | \( 1 + (0.828 + 0.560i)T \) |
| 83 | \( 1 + (0.805 - 0.593i)T \) |
| 89 | \( 1 + (-0.832 - 0.554i)T \) |
| 97 | \( 1 + (-0.511 + 0.859i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.50519345651277441093443917779, −20.90495437485259658759974018707, −19.99752692696890972492722938667, −19.20852250254973729355250373460, −18.50627350649024435214587356362, −17.987032492906634633922408735745, −16.82707502966937280281646441078, −16.39685951864825163095525791919, −15.40385317843269770897904156747, −13.8472320012911067872502149812, −13.253158965612462647163169045188, −12.766375739126336268008350311514, −12.17657007973079978542812473102, −11.09882780196619685179914816849, −10.590629443352859807939150986615, −9.48061733959250451848101799352, −8.72976947890626594416369806675, −7.90317211538589651510274445514, −6.40363073052237143589724904579, −5.76108278554061202233504705766, −4.96289882995295582980793623812, −3.95416021908200456201201596164, −2.7773144074793103894732094989, −1.72519633662266429048434834389, −0.796474356312103430956044905161,
0.479954291965145623544031328426, 2.71965910546711740274734782001, 3.63610430485086238631647563755, 4.52729871446927307923872512301, 5.55977462074155368859128652959, 6.263685301697321453234430422675, 6.90785747029624742487680515429, 7.69062653674561181768117781743, 9.236091521461762850653849097026, 9.55461690910464026691462429079, 10.735597774114723313099959476194, 11.09620614805446737420275032741, 12.663697618184729595324331740279, 13.19742335042067984565846407979, 14.05624006773837846259476548487, 15.28318258465125179671526306061, 15.551930971804749093542766302114, 16.147026822730403692973609565097, 17.29824055137470948119722728328, 17.73834264034024260455476577721, 18.4694649499817728137724165896, 19.296364599432337437480092510820, 20.61567661874958169541172098023, 21.46808666476860580832183423728, 22.25705128086813978487817728737