| L(s) = 1 | + 5-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)13-s + (0.5 − 0.866i)17-s + (−0.5 − 0.866i)23-s + 25-s + (0.5 − 0.866i)29-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (−0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + (−0.5 − 0.866i)47-s − 53-s + (0.5 + 0.866i)55-s + (−0.5 + 0.866i)59-s + ⋯ |
| L(s) = 1 | + 5-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)13-s + (0.5 − 0.866i)17-s + (−0.5 − 0.866i)23-s + 25-s + (0.5 − 0.866i)29-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (−0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + (−0.5 − 0.866i)47-s − 53-s + (0.5 + 0.866i)55-s + (−0.5 + 0.866i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 - 0.0345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 - 0.0345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.001488999201 + 0.08626743916i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.001488999201 + 0.08626743916i\) |
| \(L(1)\) |
\(\approx\) |
\(1.111449307 + 0.03837926176i\) |
| \(L(1)\) |
\(\approx\) |
\(1.111449307 + 0.03837926176i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.15375888794991703076634208858, −17.80526839635733355144990409962, −17.04540652835683757613157771793, −16.469796447060488656052207604276, −15.6960921358600702545959734500, −14.7032405581855816137327088223, −14.2802623933751299578101164991, −13.58234337733918331257637034753, −12.75617167947252191255719213373, −12.316607774580128492494368084177, −11.19901963698611887106335737228, −10.62141020438708118233640134131, −9.878935179276343268054586810290, −9.26880282734356597588379921689, −8.4217724043358985444903071667, −7.76966708559593777585544279075, −6.715709796904427225597281613567, −6.07026513373216269300847267663, −5.43776263062300582655679097720, −4.71966633507666993611371947601, −3.40358031938606000833939324507, −3.06805911975214337102858747936, −1.768554398810805366172732523406, −1.26513801386806236818954247069, −0.0119698697455752431364885049,
1.20507905830766736088159106116, 2.06940598377376053801610401636, 2.59639515391148600133247427759, 3.80942055857375721734872360156, 4.649013029673930031924921410516, 5.27415233699397925551543250049, 6.23429361496228485561661377163, 6.835868500866671918267452749750, 7.504377383422828690846741632543, 8.61647308873185051404056135079, 9.26401415949878836277253238009, 9.98279643751614707139719793405, 10.31212386869620532580998810952, 11.63067485824306800936392381030, 11.98305357239849814615834193877, 12.845422609888427767484139549316, 13.665050032341821221807730422573, 14.19716346388659833234206401309, 14.78670516100580085362312215233, 15.6136586430007842035100521516, 16.61446970287790132528266941178, 16.98573318254274379771161920803, 17.66564196010624050040081736451, 18.46851534951913129835636114287, 18.912903094595700033483460552692