| L(s) = 1 | + 5-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)23-s + 25-s + (0.5 + 0.866i)29-s + (−0.5 + 0.866i)31-s + (−0.5 − 0.866i)37-s + (−0.5 + 0.866i)41-s + (−0.5 + 0.866i)43-s + (−0.5 + 0.866i)47-s − 53-s + (0.5 − 0.866i)55-s + (−0.5 − 0.866i)59-s + ⋯ |
| L(s) = 1 | + 5-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)23-s + 25-s + (0.5 + 0.866i)29-s + (−0.5 + 0.866i)31-s + (−0.5 − 0.866i)37-s + (−0.5 + 0.866i)41-s + (−0.5 + 0.866i)43-s + (−0.5 + 0.866i)47-s − 53-s + (0.5 − 0.866i)55-s + (−0.5 − 0.866i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.001488999201 - 0.08626743916i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.001488999201 - 0.08626743916i\) |
| \(L(1)\) |
\(\approx\) |
\(1.111449307 - 0.03837926176i\) |
| \(L(1)\) |
\(\approx\) |
\(1.111449307 - 0.03837926176i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.912903094595700033483460552692, −18.46851534951913129835636114287, −17.66564196010624050040081736451, −16.98573318254274379771161920803, −16.61446970287790132528266941178, −15.6136586430007842035100521516, −14.78670516100580085362312215233, −14.19716346388659833234206401309, −13.665050032341821221807730422573, −12.845422609888427767484139549316, −11.98305357239849814615834193877, −11.63067485824306800936392381030, −10.31212386869620532580998810952, −9.98279643751614707139719793405, −9.26401415949878836277253238009, −8.61647308873185051404056135079, −7.504377383422828690846741632543, −6.835868500866671918267452749750, −6.23429361496228485561661377163, −5.27415233699397925551543250049, −4.649013029673930031924921410516, −3.80942055857375721734872360156, −2.59639515391148600133247427759, −2.06940598377376053801610401636, −1.20507905830766736088159106116,
0.0119698697455752431364885049, 1.26513801386806236818954247069, 1.768554398810805366172732523406, 3.06805911975214337102858747936, 3.40358031938606000833939324507, 4.71966633507666993611371947601, 5.43776263062300582655679097720, 6.07026513373216269300847267663, 6.715709796904427225597281613567, 7.76966708559593777585544279075, 8.4217724043358985444903071667, 9.26880282734356597588379921689, 9.878935179276343268054586810290, 10.62141020438708118233640134131, 11.19901963698611887106335737228, 12.316607774580128492494368084177, 12.75617167947252191255719213373, 13.58234337733918331257637034753, 14.2802623933751299578101164991, 14.7032405581855816137327088223, 15.6960921358600702545959734500, 16.469796447060488656052207604276, 17.04540652835683757613157771793, 17.80526839635733355144990409962, 18.15375888794991703076634208858