L(s) = 1 | + (−0.838 + 0.544i)5-s + (0.994 + 0.104i)7-s + (−0.0523 + 0.998i)13-s + (−0.309 − 0.951i)17-s + (−0.987 − 0.156i)19-s + (−0.866 − 0.5i)23-s + (0.406 − 0.913i)25-s + (0.777 − 0.629i)29-s + (0.669 + 0.743i)31-s + (−0.891 + 0.453i)35-s + (−0.987 + 0.156i)37-s + (0.994 − 0.104i)41-s + (0.965 + 0.258i)43-s + (−0.913 − 0.406i)47-s + (0.978 + 0.207i)49-s + ⋯ |
L(s) = 1 | + (−0.838 + 0.544i)5-s + (0.994 + 0.104i)7-s + (−0.0523 + 0.998i)13-s + (−0.309 − 0.951i)17-s + (−0.987 − 0.156i)19-s + (−0.866 − 0.5i)23-s + (0.406 − 0.913i)25-s + (0.777 − 0.629i)29-s + (0.669 + 0.743i)31-s + (−0.891 + 0.453i)35-s + (−0.987 + 0.156i)37-s + (0.994 − 0.104i)41-s + (0.965 + 0.258i)43-s + (−0.913 − 0.406i)47-s + (0.978 + 0.207i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.943 + 0.331i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.943 + 0.331i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.421308177 + 0.2427936153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.421308177 + 0.2427936153i\) |
\(L(1)\) |
\(\approx\) |
\(0.9961350440 + 0.1016950781i\) |
\(L(1)\) |
\(\approx\) |
\(0.9961350440 + 0.1016950781i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-0.838 + 0.544i)T \) |
| 7 | \( 1 + (0.994 + 0.104i)T \) |
| 13 | \( 1 + (-0.0523 + 0.998i)T \) |
| 17 | \( 1 + (-0.309 - 0.951i)T \) |
| 19 | \( 1 + (-0.987 - 0.156i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + (0.777 - 0.629i)T \) |
| 31 | \( 1 + (0.669 + 0.743i)T \) |
| 37 | \( 1 + (-0.987 + 0.156i)T \) |
| 41 | \( 1 + (0.994 - 0.104i)T \) |
| 43 | \( 1 + (0.965 + 0.258i)T \) |
| 47 | \( 1 + (-0.913 - 0.406i)T \) |
| 53 | \( 1 + (0.453 + 0.891i)T \) |
| 59 | \( 1 + (0.358 - 0.933i)T \) |
| 61 | \( 1 + (-0.998 + 0.0523i)T \) |
| 67 | \( 1 + (0.965 - 0.258i)T \) |
| 71 | \( 1 + (0.951 - 0.309i)T \) |
| 73 | \( 1 + (0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.978 - 0.207i)T \) |
| 83 | \( 1 + (0.998 - 0.0523i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (-0.978 + 0.207i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.135623710617195628902632101931, −18.022917866883487295791869641653, −17.55799889177015945347104948713, −16.9284913190791707388628311875, −16.05672593019841284916665352598, −15.36923864868375071068318658743, −14.90191133421387374576750947090, −14.10899744024548595680183511152, −13.21930241088254402325922384860, −12.4755842968669880420539731978, −12.02811623461737563519783077772, −11.013432938997482317543627985723, −10.7022728304838503034370971367, −9.712982428506117758744189172979, −8.63014851747014398579959931493, −8.18922343252225566390185500836, −7.737041403679822137374698423090, −6.73068568947043287823813701347, −5.75299441255108529067984512576, −5.049826463852322162569690404296, −4.21004355687082221303505018099, −3.74564949355156156325403849375, −2.53576180524158813873885484496, −1.61318216660227220105416427942, −0.684417386699754838877900856617,
0.68120204160929589997695561720, 1.989009110043129839682644976235, 2.55924801181102070229715910997, 3.67247157998575940510931857566, 4.50612045973740189048715433881, 4.8406701509339504881258666854, 6.19146021667518181087620252608, 6.76842711665441325480572011242, 7.56899220708474745334389018025, 8.26216943029299046106684990101, 8.84740383093716186676101609252, 9.8162723769033831782785851300, 10.7998786157853836705746430243, 11.13883484379040343731584224963, 12.07360720497154390795299772708, 12.26741922051803162440979785556, 13.72418307240809260402035338178, 14.109360815327057823196807999111, 14.77981615410577798477324278576, 15.55128077175379869472803171283, 16.061590893728248664477991283674, 16.92170173292713968140217547100, 17.76520864652520136739763768281, 18.249915938656463144939191621650, 19.06982771030759503120676448843