L(s) = 1 | + (−0.909 + 0.416i)2-s + (0.653 − 0.757i)4-s + (0.452 + 0.891i)5-s + (0.428 − 0.903i)7-s + (−0.278 + 0.960i)8-s + (−0.783 − 0.621i)10-s + (0.0402 − 0.999i)11-s + (−0.872 − 0.488i)13-s + (−0.0134 + 0.999i)14-s + (−0.147 − 0.989i)16-s + (0.404 − 0.914i)17-s + (0.970 + 0.239i)20-s + (0.379 + 0.925i)22-s + (0.939 + 0.342i)23-s + (−0.589 + 0.807i)25-s + (0.996 + 0.0804i)26-s + ⋯ |
L(s) = 1 | + (−0.909 + 0.416i)2-s + (0.653 − 0.757i)4-s + (0.452 + 0.891i)5-s + (0.428 − 0.903i)7-s + (−0.278 + 0.960i)8-s + (−0.783 − 0.621i)10-s + (0.0402 − 0.999i)11-s + (−0.872 − 0.488i)13-s + (−0.0134 + 0.999i)14-s + (−0.147 − 0.989i)16-s + (0.404 − 0.914i)17-s + (0.970 + 0.239i)20-s + (0.379 + 0.925i)22-s + (0.939 + 0.342i)23-s + (−0.589 + 0.807i)25-s + (0.996 + 0.0804i)26-s + ⋯ |
Λ(s)=(=(3021s/2ΓR(s+1)L(s)(−0.821−0.569i)Λ(1−s)
Λ(s)=(=(3021s/2ΓR(s+1)L(s)(−0.821−0.569i)Λ(1−s)
Degree: |
1 |
Conductor: |
3021
= 3⋅19⋅53
|
Sign: |
−0.821−0.569i
|
Analytic conductor: |
324.651 |
Root analytic conductor: |
324.651 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3021(44,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3021, (1: ), −0.821−0.569i)
|
Particular Values
L(21) |
≈ |
0.2703158913−0.8639648367i |
L(21) |
≈ |
0.2703158913−0.8639648367i |
L(1) |
≈ |
0.7525754663−0.05964027401i |
L(1) |
≈ |
0.7525754663−0.05964027401i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1 |
| 53 | 1 |
good | 2 | 1+(−0.909+0.416i)T |
| 5 | 1+(0.452+0.891i)T |
| 7 | 1+(0.428−0.903i)T |
| 11 | 1+(0.0402−0.999i)T |
| 13 | 1+(−0.872−0.488i)T |
| 17 | 1+(0.404−0.914i)T |
| 23 | 1+(0.939+0.342i)T |
| 29 | 1+(0.303−0.952i)T |
| 31 | 1+(−0.0402−0.999i)T |
| 37 | 1+(−0.748−0.663i)T |
| 41 | 1+(−0.977−0.213i)T |
| 43 | 1+(0.476−0.879i)T |
| 47 | 1+(−0.998+0.0536i)T |
| 59 | 1+(0.956+0.291i)T |
| 61 | 1+(0.994+0.107i)T |
| 67 | 1+(−0.982−0.186i)T |
| 71 | 1+(−0.476+0.879i)T |
| 73 | 1+(−0.589−0.807i)T |
| 79 | 1+(0.964−0.265i)T |
| 83 | 1+(0.5+0.866i)T |
| 89 | 1+(0.897−0.440i)T |
| 97 | 1+(0.998+0.0536i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.28355967335092273351342211950, −18.37901093099335368722721887818, −17.66983275947325450557611158100, −17.29676035709614623777245825521, −16.54917617668568107130179395225, −15.9055478457607360267361033253, −14.958096368072507648528282299653, −14.5078199126390815258930779458, −13.17837718911050532090534579358, −12.53094287498964602711340215474, −12.16504982901854082368845029825, −11.46409301691557247357898341886, −10.37012957764861017651605552066, −9.89455102087426599703414621720, −9.04471365667619009174380629560, −8.66527955546303597266021245902, −7.89746845818104368988682012632, −6.98805455335668453404575715465, −6.26593508638144729118091048316, −5.062470620363350216244687395695, −4.72182409830534010786132805569, −3.4388946045658738499201428390, −2.44780437270236617656030811798, −1.74366445377468605729203757700, −1.20786651968270603608083148834,
0.22114236502562994682072153840, 0.87317577900769179955653794131, 1.99523093653322004962454546968, 2.799101512656017290506834861898, 3.613202928108163824337595217955, 4.97407679097829173544348656620, 5.59553165306578311187193951146, 6.451816744440477763266511951634, 7.27041977009926999399989598063, 7.568107721436213756848871350885, 8.49364696428999619478063515268, 9.39929277917333388570700823699, 10.087379064584071060219234399075, 10.56594129535567327848587557447, 11.33801728800634304800543976336, 11.81484872939051168407056019910, 13.298548224360280174826574513197, 13.832898529933480994803618025768, 14.53785630836381588089940994830, 15.04877724744570507456085820619, 15.9246218061087782073568789139, 16.71892143854430991884587559737, 17.30389793736248186078917742658, 17.745951858065658012539033127392, 18.590709075734176521418673410552