| L(s) = 1 | + (−0.173 − 0.984i)3-s + (−0.642 − 0.766i)5-s + (−0.766 + 0.642i)7-s + (−0.939 + 0.342i)9-s + (0.5 − 0.866i)11-s + (−0.342 + 0.939i)13-s + (−0.642 + 0.766i)15-s + (−0.342 − 0.939i)17-s + (−0.984 + 0.173i)19-s + (0.766 + 0.642i)21-s + (−0.866 + 0.5i)23-s + (−0.173 + 0.984i)25-s + (0.5 + 0.866i)27-s + (−0.866 − 0.5i)29-s − i·31-s + ⋯ |
| L(s) = 1 | + (−0.173 − 0.984i)3-s + (−0.642 − 0.766i)5-s + (−0.766 + 0.642i)7-s + (−0.939 + 0.342i)9-s + (0.5 − 0.866i)11-s + (−0.342 + 0.939i)13-s + (−0.642 + 0.766i)15-s + (−0.342 − 0.939i)17-s + (−0.984 + 0.173i)19-s + (0.766 + 0.642i)21-s + (−0.866 + 0.5i)23-s + (−0.173 + 0.984i)25-s + (0.5 + 0.866i)27-s + (−0.866 − 0.5i)29-s − i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.566 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.566 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01954622060 - 0.03717487922i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.01954622060 - 0.03717487922i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5506323201 - 0.2164160114i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5506323201 - 0.2164160114i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 37 | \( 1 \) |
| good | 3 | \( 1 + (-0.173 - 0.984i)T \) |
| 5 | \( 1 + (-0.642 - 0.766i)T \) |
| 7 | \( 1 + (-0.766 + 0.642i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.342 + 0.939i)T \) |
| 17 | \( 1 + (-0.342 - 0.939i)T \) |
| 19 | \( 1 + (-0.984 + 0.173i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.766 - 0.642i)T \) |
| 59 | \( 1 + (-0.642 + 0.766i)T \) |
| 61 | \( 1 + (0.342 - 0.939i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.642 - 0.766i)T \) |
| 83 | \( 1 + (-0.939 + 0.342i)T \) |
| 89 | \( 1 + (0.642 - 0.766i)T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.062459739716414658278795820514, −25.553427449322851922951943516374, −23.94791513928024360902855426394, −23.01286249379431321050776451041, −22.4446663683334438157022131234, −21.82779946023702520943262537006, −20.30863483086680823198647192882, −19.95881498129444500920419351629, −18.92573732838161903309374439470, −17.55589142363980978044490551355, −16.91460303887396873778256068666, −15.783136261183085420650287557176, −15.07586189790149054213805414196, −14.426699371072350666127788287, −12.95382198124834965195019403777, −11.98862452130392807170776187527, −10.682883012991547177469718288, −10.36459316823187020508286031746, −9.26027115035750246093306255466, −7.96319848460839927508519564533, −6.84767500364608771922737664524, −5.881474489629264502269450495139, −4.25766811961533729603986320040, −3.801326763792955643452677679167, −2.51380049402269063936861885379,
0.027134008546020710181920507942, 1.628149750084993083727447686565, 2.96874866802238485476853683956, 4.33985273561316449175837486614, 5.710963715416412373882564604577, 6.54673904721604695335692560128, 7.65569393421656156757346840120, 8.71804160979296144237861454662, 9.3811678323492026028328337679, 11.23438406219350400336871682359, 11.88510401783679848696238415890, 12.6611494903669797167609050365, 13.53625758794876761819831283864, 14.55676416678312783859370533470, 15.98560081176589981386224498027, 16.499855567575867979212719201536, 17.536683276148930585132660850, 18.77905285122110334257276290700, 19.28379343211733728050305309981, 19.96609047161738916691730194547, 21.282739606179463571841020472649, 22.28853895961040458789441447681, 23.18883237100886963545750000281, 24.0769398730112609134344246614, 24.65720350664136266012643800034