L(s) = 1 | + (0.173 − 0.984i)3-s + (0.766 + 0.642i)5-s + (−0.766 − 0.642i)7-s + (−0.939 − 0.342i)9-s + (−0.5 − 0.866i)11-s + (−0.939 + 0.342i)13-s + (0.766 − 0.642i)15-s + (0.939 + 0.342i)17-s + (−0.173 + 0.984i)19-s + (−0.766 + 0.642i)21-s + (−0.5 + 0.866i)23-s + (0.173 + 0.984i)25-s + (−0.5 + 0.866i)27-s + (−0.5 − 0.866i)29-s + 31-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)3-s + (0.766 + 0.642i)5-s + (−0.766 − 0.642i)7-s + (−0.939 − 0.342i)9-s + (−0.5 − 0.866i)11-s + (−0.939 + 0.342i)13-s + (0.766 − 0.642i)15-s + (0.939 + 0.342i)17-s + (−0.173 + 0.984i)19-s + (−0.766 + 0.642i)21-s + (−0.5 + 0.866i)23-s + (0.173 + 0.984i)25-s + (−0.5 + 0.866i)27-s + (−0.5 − 0.866i)29-s + 31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.313 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.313 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2361842106 + 0.3266538755i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2361842106 + 0.3266538755i\) |
\(L(1)\) |
\(\approx\) |
\(0.8622635582 - 0.1791463383i\) |
\(L(1)\) |
\(\approx\) |
\(0.8622635582 - 0.1791463383i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.173 - 0.984i)T \) |
| 5 | \( 1 + (0.766 + 0.642i)T \) |
| 7 | \( 1 + (-0.766 - 0.642i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.939 + 0.342i)T \) |
| 17 | \( 1 + (0.939 + 0.342i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.766 + 0.642i)T \) |
| 59 | \( 1 + (-0.766 + 0.642i)T \) |
| 61 | \( 1 + (-0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.173 + 0.984i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (-0.939 - 0.342i)T \) |
| 89 | \( 1 + (-0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.28341040834682412114070655301, −24.146279760702768550636217841331, −22.82581376025193074294801916742, −22.10661326714312656228876196859, −21.38342479259759935536974376451, −20.45376860878287629382017779870, −19.82161484306378305167718413408, −18.53391085680387097291786236441, −17.41239264366998728581619656704, −16.65594566118812887156189597468, −15.74346768554783791423693067593, −14.96487476787794488081730219286, −13.92562455062376467411015456415, −12.76325286748785762063305553816, −12.07798713033859027481367794159, −10.47451626683709035828099615932, −9.76016072113446212968182077091, −9.17212289115034315789843600577, −8.022746321996174622540599658581, −6.487319761726978038575381375587, −5.247413888747130632511835422303, −4.76237289948071591150143493124, −3.10793994967466289606578140487, −2.21645056202552063430495362010, −0.11046175602123808313888553811,
1.42707030194618765397816301273, 2.668564112237943023336376404991, 3.580044212648053666389768177080, 5.58811403637576508281099300045, 6.30526428616368597270274898773, 7.29421416456316480160897339412, 8.151633468991009190932199905439, 9.639860309922853179728429783552, 10.30950648579787698681527970936, 11.60632497665436040160376656771, 12.62363913789220054971525336773, 13.6538732012490442367586319446, 14.014050958160466267535697396395, 15.166288395759436316310802185359, 16.74347675616721933380777316546, 17.16569287479366348309958536098, 18.478226325093323029386131881412, 18.965107519551160802877557669431, 19.7976212200756032381386301282, 20.9996271440192061995624084321, 21.91149500986332156669325266166, 22.95678868781200067083736520600, 23.607321179778893567035901259007, 24.67329293847488825795742784347, 25.44174334083230200816264692205