L(s) = 1 | + (0.939 − 0.342i)3-s + (−0.173 + 0.984i)5-s + (0.173 − 0.984i)7-s + (0.766 − 0.642i)9-s + (0.5 + 0.866i)11-s + (−0.766 − 0.642i)13-s + (0.173 + 0.984i)15-s + (0.766 − 0.642i)17-s + (0.939 − 0.342i)19-s + (−0.173 − 0.984i)21-s + (−0.5 + 0.866i)23-s + (−0.939 − 0.342i)25-s + (0.5 − 0.866i)27-s + (0.5 + 0.866i)29-s + 31-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)3-s + (−0.173 + 0.984i)5-s + (0.173 − 0.984i)7-s + (0.766 − 0.642i)9-s + (0.5 + 0.866i)11-s + (−0.766 − 0.642i)13-s + (0.173 + 0.984i)15-s + (0.766 − 0.642i)17-s + (0.939 − 0.342i)19-s + (−0.173 − 0.984i)21-s + (−0.5 + 0.866i)23-s + (−0.939 − 0.342i)25-s + (0.5 − 0.866i)27-s + (0.5 + 0.866i)29-s + 31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.977 - 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.977 - 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.744122611 - 0.1840241089i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.744122611 - 0.1840241089i\) |
\(L(1)\) |
\(\approx\) |
\(1.440533420 - 0.09004690007i\) |
\(L(1)\) |
\(\approx\) |
\(1.440533420 - 0.09004690007i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.939 - 0.342i)T \) |
| 5 | \( 1 + (-0.173 + 0.984i)T \) |
| 7 | \( 1 + (0.173 - 0.984i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.766 - 0.642i)T \) |
| 17 | \( 1 + (0.766 - 0.642i)T \) |
| 19 | \( 1 + (0.939 - 0.342i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (0.766 + 0.642i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.173 - 0.984i)T \) |
| 59 | \( 1 + (-0.173 - 0.984i)T \) |
| 61 | \( 1 + (-0.766 - 0.642i)T \) |
| 67 | \( 1 + (-0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (-0.766 + 0.642i)T \) |
| 89 | \( 1 + (0.173 + 0.984i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.24963385817002031105175143944, −24.53632499792798551896789553863, −24.17615909664330206774255290123, −22.57109059554373974877668803073, −21.436294375696353235224786665585, −21.1759975211480033286195483200, −19.95135887448211807782878925398, −19.28751682025341932438413623872, −18.47325622315987057061527785060, −16.96476027399793153736855268577, −16.251447008883476104203964008382, −15.35871981069190177520643686637, −14.38778294177935894368655849788, −13.615104537150340905296188253226, −12.32777332809022629987007368995, −11.78224472667668770682270655254, −10.13018596654406231865773549136, −9.23209644884284013162348062929, −8.500048449416877380234845797346, −7.76715755795193188757775475939, −6.08428571631666411535212154602, −4.952163930183607773425035398273, −3.95662974543580732934302807197, −2.71433139159036310348245988313, −1.47119384356174972694014747732,
1.34380250178966440887803878282, 2.780232053397429429821409306935, 3.57074993204722112106279574406, 4.82073139033071376002339936166, 6.62876853583092011622444394804, 7.40044784828734358873855156265, 7.92556292610402872936456378511, 9.67687123040277111417360530517, 10.03232235455505345021595848621, 11.44850475800942613742950780081, 12.443444118133571469426218991723, 13.67860982012566133005851235039, 14.30954096778128210027182748636, 15.0091338213085813981632748354, 16.046574284279025811245212273071, 17.56493487845037780785521883913, 18.0391546000602604252442806408, 19.29090370017919515352916064343, 19.89519391999285689684358898325, 20.60299221700550258702467546506, 21.82169821339313480390830307179, 22.81380263077660716438498920709, 23.533965195142658802359400568336, 24.65901915040766332820943937590, 25.45486738169246288911623954995